Math 118 Practice Final Exam

1. When I first moved to Atlanta, it rained every day for two weeks. One day, I decided to measure how much it was raining. Here is a selection of the data that I gathered (t is the number of hours after noon, and $f(t)$ is the number of inches of rain that had fallen since noon).

t	3.0	3.2	3.4	3.6	3.8
$f(t)$	0.82	0.95	1.05	1.10	1.32

(a) What was the average rate at which the rain was falling between $t=3.0$ and $t=3.8$?
(b) Estimate $f^{\prime}(3.0)$ (including units).
2. Compute the following derivatives:
(a) $\frac{d}{d x}\left(\cos \left(3 x^{2}+1\right)\right)$
(b) $\frac{d}{d x}\left(\frac{4^{x}}{7-x}\right)$
(c) $\frac{d}{d t}\left(5+3 t^{2} e^{-t}\right)$
3. Compute the following integrals:
(a) $\int_{-\pi}^{0} \sin (t) d t$
(b) $\int^{-\pi} \frac{2}{t} d t$
(c) $\int_{1}^{3} \frac{2}{x^{3}} d x$
(d) $\int_{-2}^{2}|x| d x$
4. Use linear approximation to estimate $\ln (0.9)$. (Hint: $a=1$ may be a good choice.)
5. A truck full of fashionable shoes leaves the factory at noon and travels along a straight road. The truck's velocity (in miles per hour) is given by $v(t)=30 t-3 t^{2}$, where t is the number of hours since noon. If you live 10 miles down the road from the factory, will the truck have passed your house by 1:00 pm?
6. You've just been hired as the new president of Delta Airlines. Your underlings tell you that the regular air fare between Atlanta and Austin is $\$ 500$. Delta flies 747s (which can hold up to 380 people) on this route, and averages 300 passengers. Market research indicates that each $\$ 1$ fare reduction would attract, on average, 1 more passenger for each flight (and conversely: each $\$ 1$ fare increase would reduce the average number of passengers per flight by 1). How should you set the fare to maximize Delta's revenue?
7. Let $f(t)$ be the total number of gallons of delicious chocolate milk that Hilda has consumed by age t (years). Interpret the following in practical terms. (HINT: units!)
(a) $f(14)=400$
(b) $f^{-1}(50)=6$
(c) $f^{\prime}(12)=50$
(d) $\left(f^{-1}\right)^{\prime}(450)=1 / 70$
8. I'm filling a spherical balloon with water. The volume V of the balloon depends on the radius r : $V=\frac{4}{3} \pi r^{3}$. After t seconds, the radius is $r(t) \mathrm{cm}$.
(a) Explain in words the meanings of the following derivatives (give units): $d V / d r, d r / d t, d V / d t$.
(b) The radius is increasing at $2 \mathrm{~cm} / \mathrm{sec}$. At what rate $\left(\mathrm{cm}^{3} / \mathrm{sec}\right)$ is the volume increasing when the radius is 10 cm ?

