Math 118 Solutions to 2nd Midterm

1. What are the maximum and minimum values of the function $f(x)=x^{3}-3 x+1$ on the interval $[0,3]$, and where do they occur?

Check endpoints and critical points. $f^{\prime}(x)=3 x^{2}-3$, which exists everywhere, so set $f^{\prime}(x)=0$: $3 x^{2}-3=0$, or $x^{2}=1$, or $x= \pm 1$. Only $x=1$ is in the interval $[0,3]$.

x	$f(x)$
$\mathbf{0}$	$\mathbf{1}$

1 -1
$3 \quad 19$
So the maximum is 19 , which occurs at $x=3$, and the minimum is $\mathbf{- 1}$, which occurs at $x=1$.
2. Use linear approximation to estimate $\ln (0.9)$. (Hint: $a=1$ may be a good choice.)
$\mathbf{f}(\mathbf{x}) \approx \mathbf{f}(\mathbf{a})+\mathbf{f}^{\prime}(\mathbf{a})(\mathbf{x}-\mathbf{a})$. Here, $a=1$ and $f^{\prime}(x)=1 / x$, so $f(a)=\ln (1)=0$ and $f^{\prime}(a)=1 / 1=1$, and we have $\ln (x) \approx 0+1(x-1)=x-1$. So $\ln (0.9) \approx 0.9-1=-0.1$
3. Evaluate the following limits, or state that they do not exist.
(a) $\lim _{x \rightarrow 0} \frac{x^{2}}{\sin x}$
(b) $\lim _{x \rightarrow 0} \frac{\cos x}{x}$
(a) This is 4.7 .5 from the text. Plug in and get $0 / 0$, so we use L'Hopital: $\lim _{x \rightarrow 0} \frac{x^{2}}{\sin x}=\lim _{x \rightarrow 0} \frac{2 x}{\cos x}=0 / 1=0$.
(b) this is 4.7 .27 from the text. Plug in and get $1 / 0$, so the limit doesn't exist (it diverges to infinity).
4. (a) If r is the radius of a circle with area A and the circle expands as time passes, find $d r / d t$ in terms of $d A / d t$.
(b) Suppose delicious Vermont maple syrup leaks from its bottle and spreads in a circular pattern. If the area of the syrup spill increases at a constant rate of $2 \mathrm{~cm}^{2} /$ second, how fast is the radius of the spill increasing when the radius is 30 cm ?
(a) $A=\pi r^{2}$, so $\mathrm{dA} / \mathrm{dt}=2 \pi \mathrm{rdr} / \mathrm{dt}$, and $\mathrm{dr} / \mathrm{dt}=(\mathrm{dA} / \mathrm{dt}) /(2 \pi \mathrm{r})$.
(b) Plug into $\mathrm{dr} / \mathrm{dt}=(\mathrm{dA} / \mathrm{dt}) /(2 \pi \mathrm{r}): \mathrm{dr} / \mathrm{dt}=2 /(2 \pi 30)=1 /(30 \pi) \mathrm{cm} / \mathrm{sec}$.
5. Jungle Jane sells robotic monkeys over the internet. To sell q robomonkeys per month, she needs to set the price at $p=125-\frac{q}{25}$ dollars per robomonkey. If she has fixed costs of $\$ 10,000$ per month, and each robomonkey costs her $\$ 25$ to make, how many robomonkeys should she make each month to maximize her profit?

Profit $=$ revenue - cost, or $\pi=R-Q$. The revenue is $R=p q=\left(125-\frac{q}{25}\right) q=125 q-\frac{q^{2}}{25}$, and the cost is $C=10,000+25 q$, so the profit is $\pi=125 q-\frac{q^{2}}{25}-10,000-25 q=$ $100 q-\frac{q^{2}}{25}-10,000$. The endpoints are $q=0$ and $q \rightarrow \infty$. Next, we find the critical points. $\pi^{\prime}=100-\frac{2 q}{25}$, which exists everywhere, so we set it equal to zero: $100-\frac{2 q}{25}=0$, or $100=\frac{2 q}{25}$, or $2500=2 q$, or $1250=q$. This is the only critical point, and $\pi^{\prime \prime}=2 / 25>0$, so the maximum must occur there: she should make 1250 robomonkeys each month.
EXTRA CREDIT Draw a robomonkey.

