1. On the moon the acceleration due to gravity is $5 \mathrm{ft} / \mathrm{sec}^{2}$. A moon-cantaloupe is dropped from the top of a moon-tower and hits the moon-ground in 20 seconds. How tall is the tower? (Give your answer in feet.)

Velocity $v(t)=\int-5 d t=-5 t+C$. Because it's dropped, the initial velocity is $\mathbf{0}$, so $v(t)=-5 t$. Height $h(t)=\int-5 t d t=-\frac{5}{2} t^{2}+C$, where C is the unknown height of the tower. We know that $h(20)=0$, so $-\frac{5}{2} \cdot 20^{2}+C=0$, or $C=1000$.
2. Explain whether the following improper integrals converge or diverge. (You don't necessarily have to compute the integral.)
(a) $\int_{1}^{\infty} \sin ^{2} x d x$

Diverges - the integrand oscillates.
(b) $\int_{1}^{\infty} \frac{1}{x^{10}} d x$

Converges. (Compute it, or recall that $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges for $p>1$.
(c) $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{10}} d x$

Converges, by comparison with (b). $\left(0 \leq \sin ^{2} x \leq 1.\right)$
3. Compute $\frac{d}{d t} \int_{1}^{\sin t} \cos \left(x^{2}\right) d x$.
(This is problem 6.4.25 from your homework.) Use the FT of C and the chain rule. We want $\frac{d}{d t} \int_{1}^{u} \cos \left(x^{2}\right) d x$, where $u=\sin t$. $\frac{d}{d t} \int_{1}^{u} \cos \left(x^{2}\right) d x=\cos \left(u^{2}\right) \cdot \frac{d u}{d t}=$ $\cos \left(\sin ^{2} t\right) \cdot \cos t$.
4. The graph of $f(x)$ is given below. Let $F^{\prime}(x)=f(x)$. Please don't get \boldsymbol{F} and \boldsymbol{f} mixed up while doing this problem!
(a) What are the critical points of $F(x)$?

Critical points are where the derivative $F^{\prime}(x)=f(x)$ is zero, namely at $\mathbf{- 1 . 8}, \mathbf{0}$, and 1.8 .
(b) Which critical points are local maxima, which are local minima, and which are neither?

The derivative $f(x)$ goes from negative to positive at -1.8 , so that's a local minimum. It goes from positive to negative at 1.8 , so that's a local maximum. It goes from positive to positive at 0 , so that's neither.
(c) Sketch the graph of $F(x)$ on the bottom axes, given that $F(-2)=0$.

5. It's the year 2031, and Agnes Scott is erecting a statue of you, in honor of your efforts to end the war between North and South Dakota. Your statue will sit on a block of granite in the shape of a truncated pyramid, also called a frustum. It has a square base with side length $b=4$ meters, height $h=6$ meters, and a square top with side length $a=2$ meters (see the figure below).
(a) Set up an integral that gives the volume of the frustum. (Hint: What is the area of a horizontal cross section?)
(b) Evaluate the integral to find the volume.

(a) If we included the top of the pyramid, the height would be 12 meters. So, using similar triangles, a horizontal cross section h meters above the ground is a square of side length $4-\frac{h}{3}$. Thus the volume of a thin (height $=\Delta h$) horizontal slice is roughly $\left(4-\frac{h}{3}\right)^{2} \Delta h$, and the integral giving the volume is $\int_{0}^{6}\left(4-\frac{h}{3}\right)^{2} d h$.
(b) 56

