Math 119 Midterm \#2 Solutions

1. Consider the region bounded by $y=x^{2}$, the y-axis, and the line $y=4$, with $x \geq 0$. Find the volume of the solid obtained by rotating the region about the y-axis. (Careful: Be sure to rotate about the y-axis, not the x-axis.)

The cross sections are disks, so the volume is $\int_{0}^{4} \pi x^{2} d y$. We solve for x in terms of y to get $x=\sqrt{y}$, so we plug in and get $V=\int_{0}^{4} \pi y d y=8 \pi$.
2. Use a second-degree Taylor polynomial to approximate $\ln (1.1)$.

The Taylor polynomial for $\ln (x)$ at $x=1$ is $P_{2}(x)=(x-1)-\frac{1}{2}(x-1)^{2}$, so $\ln (1.1) \approx$ $P_{2}(1.1)=.1-\frac{1}{2}(.1)^{2}=0.095$.
3. For several years I've been recording the amount of delicious chocolate milk that I drink each day. The data show that the density function of these amounts is given approximately by the function $p(x)$ (where x is the amount in gallons). Set up integrals to answer the following questions.
(a) On what proportion of days do I drink between 4 and 5 gallons of delicious chocolate milk?
(b) On what proportion of days do I drink 8 or more gallons of delicious chocolate milk?
(c) On average, how many gallons do I drink per day?
a) $\int_{4}^{5} p(x) d x$ b) $\int_{8}^{\infty} p(x) d x$ c) $\int_{0}^{\infty} x p(x) d x$
4. This problem deals with the questions of estimating the cumulative effect of a tax cut on a country's economy. Suppose the government proposes a tax cut totaling $\$ 100$ million. We assume that all the people who have extra money to spend would spend 80% of it and save 20%. Thus, of the extra income generated by the tax cut, $\$ 100(0.8)$ million $=\$ 80$ million would be spent and so become extra income to someone else. Assume that these people also spend 80% of their additional income, or $\$ 80(0.8)$ million, and so on. Calculate the total additional spending created by such a tax cut.
(This is problem 9.2.31 from your homework.)
This is a geometric series: (.8) $100+(.8)^{2} 100+\cdots=80 \frac{1}{1-.8}=400$ million dollars.
5. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^{n}}{n \cdot 3^{n}}$.

The radius of convergence is $\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n \cdot 3^{n}}}{\frac{1}{(n+1) \cdot 3^{n+1}}}=\lim _{n \rightarrow \infty} \frac{3 \cdot(n+1)}{n}=3$.

