MATH 321 Algebra Practice Midterm #1

- **1.** Let $H = \{ \sigma \in S_n \mid \sigma(1) = 1 \}$. Prove that H is not a normal subgroup of S_n for $n \ge 3$.
- 2. COMPUTATIONAL PROBLEMS
 - (a) Draw the subgroup diagram for \mathbb{Z}_{45} .
 - (b) List all abelian groups of order 45, up to isomorphism.
 - (c) Let $G = S_4$ and let $H = \{e, (123), (132)\}$. Compute the left coset gH, where g = (12)(34). (You do not need to show that H is, in fact, a subgroup of G.)
 - (d) Compute (G : H), the index of H in G, where H and G are given in part (c).
 - (e) Classify the factor group $(\mathbb{Z}_3 \times \mathbb{Z}_6)/\langle (1,2) \rangle$ according to the fundamental theorem of finitely generated abelian groups.
 - (f) Let G be the group of all polynomials with real coefficients. Let $\phi_0 : G \to \mathbb{R}$ be the evaluation homomorphism given by $\phi_0(P(x)) = P(0)$. Find the kernel of ϕ . What is the factor group $G/\ker \phi_0$?
 - (g) Find the primitive sixth roots of unity.
- **3.** Let G be a group, and let $\phi: G \to G$ be defined by $\phi(g) = g^{-1}$. Is ϕ an isomorphism? If so, prove it; if not, show exactly which properties of an isomorphism fail. (That is, prove which properties do hold and explain which ones don't and why.)
- 4. Let G be a finite group, and suppose that H and K are subgroups of G.
 - (a) Prove that $H \cap K$ is a subgroup of G.
 - (b) Prove that if the order of H is relatively prime to the order of K then $H \cap K = \{e\}$.