(1) Find the maximum and minimum values of the function $f(x, y)=x^{2}+2 y^{2}$ on the unit disk $x^{2}+y^{2} \leq 1$
(2) Let \mathbf{u} and \mathbf{v} be two 3 -dimensional vectors lying in the $x y$-plane, with an angle of 45° between them. If $\|\mathbf{u}\|=3$ and $\|\mathbf{v}\|=2$, find the following:
(a) $\mathbf{u} \cdot \mathbf{v}$
(b) $\mathbf{u} \times \mathbf{v}$
(3) Verify Gauss's (Divergence) Theorem for the solid unit ball $B\left(x^{2}+y^{2}+z^{2} \leq 1\right)$ and the vector field $\mathbf{F}(x, y, z)=(0,-z, y)$.
(4) Compute $\int_{0}^{2} \int_{\frac{y}{2}}^{1} e^{x^{2}} d x d y$.
(5) State whether each of the following statements is true or false. For each that is false, give an example showing that it's false.
(a) For every C^{2} function $f, \nabla \times(\nabla f)=\mathbf{0}$.
(b) For every C^{2} function $f, \nabla \cdot(\nabla f)=\mathbf{0}$.
(c) For every C^{2} vector field $\mathbf{F}, \nabla \cdot(\nabla \times \mathbf{F})=\mathbf{0}$.
(6) Use Stokes' Theorem to compute $\int_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}$, where S is the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=10$ and \mathbf{F} is the vector field $\mathbf{F}(x, y, z)=\left(\cos (\ln (x z)),\left(x^{2}+y^{2}\right)^{\frac{5}{2}}, e^{z^{2}-x}\right)$.
(7) Give an example of a vector field that is not a gradient vector field, and explain how you can be sure that it isn't.
(8) Let S be the surface parametrized by

$$
x=1+\cos u, \quad y=4+3 \sin u, \quad z=v, \quad 0 \leq u \leq 2 \pi, \quad-2 \leq v \leq 2
$$

Find an equation for the tangent plane to the surface S at the point corresponding to $u=0, v=1$.
(9) Let $\mathbf{F}(x, y, z)=\mathbf{k}$. Define the following surfaces in \mathbb{R}^{3} :

- R_{1} is the unit disk in the $x y$-plane, oriented in the negative z direction.
- R_{2} is the upper unit hemisphere, i.e., $R_{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$, oriented in the positive z direction.
- R_{3} is the unit disk in the $y z$-plane, oriented in the positive x direction.

Place the following flux integrals in order from least to greatest:

$$
\iint_{R_{1}} \mathbf{F} \cdot d \mathbf{S}, \iint_{R_{2}} \mathbf{F} \cdot d \mathbf{S}, \iint_{R_{3}} \mathbf{F} \cdot d \mathbf{S}
$$

(10) Let D be the elliptical disk $25 x^{2}+4 y^{2} \leq 100$. Compute the area of D in two different ways:
(a) Using the fact that the change of variables $T(u, v)=(2 u, 5 v)$ maps the unit disk D^{*} in the (u, v)-plane one-to-one onto D.
(b) Using Green's Theorem.
(11) Define the functions

$$
\begin{gathered}
g(x, y)=\left(g_{1}(x, y), g_{2}(x, y)\right)=\left(x^{2}+1, y^{2}\right) \\
f(u, v)=\left(f_{1}(u, v), f_{2}(u, v), f_{3}(u, v)\right)=\left(u+v, u, v^{2}\right), \text { and } \\
h(x, y)=\left(h_{1}(x, y), h_{2}(x, y), h_{3}(x, y)\right)=f(g(x, y))
\end{gathered}
$$

(a) Compute $\mathbf{D} h(1,1)$.
(b) What is $\frac{\partial h_{3}}{\partial y}(1,1)$?
(12) Let R be the region in \mathbb{R}^{3} bounded by the sphere of radius 3 , the sphere of radius 4 , the cone $z=-\sqrt{x^{2}+y^{2}}$, and the cone $z=-2 \sqrt{x^{2}+y^{2}}$. Which of the following integrals represents the volume of R ?
(a) $\int_{3}^{4} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{-\sqrt{x^{2}+y^{2}}}^{-2 \sqrt{x^{2}+y^{2}}} d z d y d x$
(b) $\int_{3}^{4} \int_{0}^{2 \pi} \int_{\frac{3 \pi}{4}}^{\frac{5 \pi}{6}} d \phi d \theta d \rho$
(c) $\int_{3}^{4} \int_{0}^{2 \pi} \int_{-2 r^{2}}^{-r^{2}} r d z d r d \theta$
(d) None of the above.

EXTRA CREDIT Explain in what sense Stokes' Theorem is a version of the Fundamental Theorem of Calculus.

