(1) Suppose that the function $f(x, y)=x^{2}+2 x+y^{2}+1$ gives the temperature at the point (x, y). Let B be the disk of radius 2 centered at the origin, i.e., $B=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$.
(a) Find the maximum and minimum values of f restricted to the disk B.

1st, find int. crit. pts of $f . \nabla f=(\alpha x+\alpha, \alpha y)$-always exists, only crit. g^{-1} is $(-1,0)$.
$\alpha^{n d}$, use lagreye multipliers to find possible extrema on bandy y circle $g(x, y)=x^{2}+y^{2}=4$ $\nabla g=\left(\alpha x, d_{y}\right)$-never 0 on $g=4$. So solve $\nabla f=t \nabla_{g}$ on $g=\varphi$:

$$
\begin{aligned}
& \partial x+2=\lambda d x, \frac{\alpha y=\lambda d y}{}, \text { ad } x^{2}+y^{j}=4 . \\
& y=0 \text { or } \lambda=1 . \quad \text { If } y=0 \text {, men } x= \pm \alpha . \text { If } \lambda=1 \text {; then } d x+\alpha=2 x \text {, or }
\end{aligned}
$$

$\alpha=0-n 0$ sold. So sols. are $(\pm 2,0)$.

$$
\begin{aligned}
& f(-1,0)=1-2+0+1=0 \longleftarrow \text { minimum value } \\
& f(2,0)=4+4+0+1=9 \longleftarrow \text { maximum value } \\
& f(-2,0)=4-4+0+1=1
\end{aligned}
$$

(b) If you start at the point $(1,0)$ and move northeast at unit speed, how fast is the temperature changing?
NE $\lambda \vec{u}=\left(\frac{1}{\sqrt{d}}, \frac{1}{\sqrt{d}}\right)$. The answer is $f_{\vec{u}}=\nabla f(1,0) \cdot\left(\frac{1}{\sqrt{\alpha}}, \frac{1}{\sqrt{\alpha}}\right)$

$$
\begin{aligned}
& =(\alpha \cdot 1+\alpha, \alpha \cdot 0) \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{\alpha}}\right) \\
& =(4,0) \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
& =\frac{4}{\sqrt{2}}=2 \sqrt{\alpha}
\end{aligned}
$$

(2) A city occupies a semicircular region of radius 5 km bordering on the ocean. Find the average distance from points in the city to the ocean.

Distance to clean is y, so the average distance is

$$
\frac{\iint_{R} y d A}{\operatorname{arca} \& R}=\frac{\iint_{R} y d A}{\frac{1}{2} \pi S^{2}}=\frac{\iint_{R} y d A}{\frac{\partial S}{2} \pi}
$$

This is easier in polder coordinates:

$$
\begin{aligned}
& \text { This is easier in poor coordinates: } \\
& \iint_{R} y d A=\int_{0}^{5} \int_{0}^{\pi} y \cdot r d \theta d r=\int_{0}^{5} \int_{0}^{\pi} r^{2} \sin \theta d \theta d r \quad(\sin c e y=r \sin \theta) \\
& =\int_{0}^{5} r^{2}\left[-\cos \theta\left[\begin{array}{l}
\pi \\
0
\end{array}\right] d r=\int_{0}^{5} r^{2}(-(-1)-(-1)) d r=\int_{0}^{5} 2 r^{2} d r=\left.\frac{\alpha}{3} r^{3}\right|_{0} ^{5}=\frac{2 \cdot 125}{3}\right.
\end{aligned}
$$

So the average distance is $\frac{\frac{\partial \cdot 12 S}{3}}{\frac{\partial S}{\partial} \pi}=\frac{2 \cdot 2 \cdot 125}{3 \cdot 2 s \cdot \pi}=\frac{20}{3 \pi}$
We can also do it in recteguter coordinates.'

$$
\begin{aligned}
& \text { We can also do it in recteguler coordinates: } \\
& \iint_{R} y d A=\int_{-5}^{5} \int_{0}^{\sqrt{d 5-x^{2}}} y d y d x=\int_{-5}^{5}\left[\left.\frac{y^{2}}{2}\right|_{0} ^{\sqrt{25-x^{2}}}\right] d x=\int_{-5}^{5} \frac{25-x^{2}}{2} d x \\
& =\left.\frac{25 x-\frac{1}{3} x^{3}}{2}\right|_{-5} ^{5}=\frac{2 \cdot 125}{3} \text {, as before }
\end{aligned}
$$

(3) State whether each of the following is true or false. If it's false, explain why or give an example showing that it's false.
(a) If $f(x, y)=k$ for all points (x, y) in a region R, then $\iint_{R} f d A=k \cdot \operatorname{Area}(R)$.

(b) There is a function f with $\|\nabla f\|=4$ and $f_{\vec{i}}=5$ at some point.

$$
\text { False }-f_{1}=V f \cdot \overrightarrow{1}=\text { shadow of } \Delta f \text { on } \vec{\imath} \text {. }
$$

If Nf has leggin 4, its shadow can be 5 .
(c) There is a function f with $\|\nabla f\|=4$ and $f_{\vec{j}}=-3$ at some point.

(d) Let $\rho(x, y)$ be the population density of a city, in people per km^{2}. If R is a region in the city, then $\iint_{R} f d A$ gives the average number of people per km^{2}.

$$
\text { False - } \frac{\iint_{R} f d A}{\iint_{R} d A=\text { raf } R} \text { is Re average }
$$

(e) Let $f(x, y, z)$ be a continuous function. If W_{1} and W_{2} are solid regions with volume $\left(W_{1}\right)$ $>$ volume $\left(W_{2}\right)$, then $\iiint_{W_{1}} f d V>\iiint_{W_{2}} f d V$.

$$
\text { False-If } f<0 \text { everywhere, the } \iiint_{w_{1}} f d v>\iiint_{w_{\alpha}} f d V
$$

Solution to exercise 4.4.4 in Colley

If $y=a / x+b$, then the corresponding points on the curve are $(1, a+b),(2, a / 2+b),(1 / 2,2 a+b)$, and $(3, a / 3+b)$. We want to minimize the sum of the squares of the vertical distances between these points and our data points, i.e., minimize

$$
f(a, b)=(0-(a+b))^{2}+(-1-(a / 2+b))^{2}+(1-(2 a+b))^{2}+(-1 / 2-(a / 3+b))^{2} .
$$

