(1) Determine if the following series converge or diverge. Be sure to give reasons!
(a) $\sum_{n=1}^{\infty} \frac{2 n^{4}-6 n^{3}+13 n}{n^{5}+n^{2}+4}$
(b) $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+1}$
(c) $\sum_{n=2}^{\infty} \frac{(n!)(n!)}{(2 n)!}$
(d) $\sum_{n=1}^{\infty}\left(1+\frac{2}{n}\right)^{n}$
(e) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{2^{n}}$
(f) $\sum_{n=1}^{\infty} a_{n}$, if the nth partial sum of this series is given by $s_{n}=\frac{n-1}{2 n+1}$.
(g) $\sum_{n=1}^{\infty} \frac{n+1}{n} a_{n}$, if you know that $\sum_{n=1}^{\infty} a_{n}$ is a positive series that converges.
(2) Compute the sum of the geometric series $\sum_{n=0}^{\infty} a r^{n}$ when $|r|<1$ and prove that your sum formula is correct.
(3) Without using the p-test, prove that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
(4) Find positive numbers A and B such that

$$
0<A \leq \sum_{n=1}^{\infty} \frac{1}{n^{3}} \leq B
$$

(5) Determine the interval and radius of convergence of the following series. (Include endpoints!)
(a) $\sum_{n=1}^{\infty} \frac{(x+4)^{n}}{2 n+1}$
(b) $\sum_{n=1}^{\infty} \frac{n!x^{2 n}}{3^{n}}$
(c) $\sum_{n=0}^{\infty} \frac{(x-222)^{n}}{n^{2}+1}$
(d) $\sum_{n=0}^{\infty} \frac{n!2^{n} x^{n}}{(2 n)!}$
(6) (a) Find the Maclaurin series for $f(x)=e^{x^{2}}$.
(b) Use this series to compute $f^{(10)}(0)$. (Hint: What is the coefficient of x^{10} in part(a)? What should the coefficient be according to the definition of a Maclaurin series?)
(7) By integrating the geometric series expansion of $\frac{1}{1+x^{2}}$, we get the following series for $\arctan x$:

$$
\arctan x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
$$

What is the interval of convergence of this series? (Be sure to check endpoints....)
(8) Suppose that at the beginning of each hour, a patient is given an injection of a 300 mg dose of antibiotics. It is known that after one hour, 43% of this antibiotic leaves one's system. So, the total amount of the drug in the patient after one hour is $300+300(.57) \mathrm{mg}$.
(a) How many mg of the drug are in the body after 24 hours?
(b) It turns out that 700 mg is a lethal dose of this antibiotic. Will the patient ever have this much of the drug in his/her system?
(9) For each part, first determine whether or not a such a series exists. If one does exist, give an example of such a series and explain why it is a valid example. If one does not exist, explain why not.
(a) an alternating series that does not converge
(b) a geometric series that converges to 2
(c) a divergent series whose terms go to zero
(d) a convergent series whose terms do not go to zero
(e) a convergent series whose terms go to zero
(10) Find an infinite series equal to $\sin 1$.
(11) (a) Compute $T_{4}(x)$ (the fourth-degree Taylor polynomial) for $f(x)=\cos x$ at $a=0$.
(b) Compute the accuracy of using $T_{4}(x)$ to approximate $\cos 1$. (i.e., What is a bound on the error?)

