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The BC Calculus Course Description mentions how technology can be used to explore conver-
gence and divergence of series, and lists various tests for convergence and divergence as topics to
be covered. But no specific mention is made of actually estimating the sum of a series, and the
only discussion of error bounds is for alternating series and the Lagrange error bound for Taylor
polynomials. With just a little additional effort, however, students can easily approximate the sum
of many common convergent series and determine how precise that approximation will be.

Approximating the Sum of a Positive Series

Here are two methods for estimating the sum of a positive series whose convergence has been
established by the integral test or the ratio test. Some fairly weak additional requirements are
made on the terms of the series. Proofs are given in the appendix.

Let S =
∞∑

n=1
an and let the nth partial sum be Sn =

n∑
k=1

ak.

1. Suppose an = f(n) where the graph of f is positive, decreasing, and concave up, and the
improper integral

∫∞
1 f(x) dx converges. Then

Sn +
∫ ∞

n+1
f(x) dx +

an+1

2
< S < Sn +

∫ ∞

n
f(x) dx− an+1

2
. (1)

(If the conditions for f only hold for x ≥ N , then inequality (1) would be valid for n ≥ N .)

2. Suppose (an) is a positive decreasing sequence and lim
n→∞

an+1

an
= L < 1.

• If
an+1

an
decreases to the limit L, then

Sn + an

(
L

1− L

)
< S < Sn +

an+1

1− an+1

an

(2)

• If
an+1

an
increases to the limit L, then

Sn +
an+1

1− an+1

an

< S < Sn + an

(
L

1− L

)
. (3)
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Example 1: S =
∞∑

n=1

1

n2

The function f(x) =
1
x2

is positive with a graph that is decreasing and concave up for x ≥ 1, and

an = f(n) for all n. In addition,
∫∞
1 f(x) dx converges. This series converges by the integral test.

By inequality (1),

Sn +
1

n + 1
+

1
2(n + 1)2

< S < Sn +
1
n
− 1

2(n + 1)2
. (4)

This inequality implies that S is contained in an interval of width

1
n
− 2

2(n + 1)2
− 1

n + 1
=

1
n(n + 1)2

.

If we wanted to estimate S with error less than 0.0001, we could use a value of n with 1
n(n+1)2

<

0.0002 and then take the average of the two endpoints in inequality (4) as an approximation for
S. The table feature on a graphing calculator shows that n = 17 is the first value of n that works.
Inequality (4) then implies that 1.6449055 < S < 1.64508711 and a reasonable approximation would
be

S ≈ 1.6449055 + 1.6450870
2

≈ 1.645

to three decimal places. With n = 100, inequality (4) actually shows that 1.6449339 < S <
1.6449349, and hence we know for sure that S = 1.64493... .

Of course, in this case we actually know that S = π2

6 = 1.644934066... . Notice also that
S100 ≈ 1.6349839, so the partial sum with 100 terms is a poor approximation by itself.

Example 2: S =
∞∑

n=1

n

n4 + 1

Let f(x) = x
x4+1

. The graph of f is decreasing and concave up for x ≥ 2. Also∫ ∞

n

x

x4 + 1
=

π

4
− 1

2
arctan(n2)

and so the improper integral converges. We can therefore use inequality (1) for n ≥ 2, and so

Sn +
π

4
− 1

2
arctan((n + 1)2) +

n + 1
2((n + 1)4 + 1)

< S < Sn +
π

4
− 1

2
arctan(n2)− n + 1

2((n + 1)4 + 1)
.

for n ≥ 2. Using n = 10 in this inequality yields 0.6941559 < S < 0.6942724. We can conclude
that S ≈ 0.694 to three decimal places.

Example 3: S =
∞∑

n=0

1

n!

The terms of this series are decreasing. In addition,

an+1

an
=

1
(n + 1)!

· n!
1

=
1

n + 1
1We will use the convention for positive endpoints of truncating the left endpoint of the interval and rounding up

the right endpoint. This will make the interval slightly larger than that given by the actual symbolic inequality.
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which decreases to the limit L = 0. By inequality (2)

Sn < S < Sn +
1

(n+1)!

1− 1
n+1

= Sn +
1

n!n
.

for all n. Using n = 10 in this inequality yields 2.7182818 < S < 2.7182819 and hence S ≈
2.7182818. These, of course, are the first seven decimal places of e = 2.718281828... .

Example 4: S =
∞∑

n=1

1

n25n

We have
an+1

an
=

1
(n + 1)25n+1

· n25n

1
=

(
n

n + 1

)2

· 1
5

which increases to the limit L = 1
5 . According to inequality (3)

Sn +
1

(n+1)25n+1

1− 1
5

(
n

n+1

)2 < S < Sn +
1

n25n
·

1
5
4
5

which simplifies to

Sn +
1

(4n2 + 10n + 5) 5n
< S < Sn +

1
4n25n

.

With n = 5, this inequality shows that 0.2110037 < S < 0.2110049.

Example 5: S =
∞∑

n=1

n!

nn

We have
an+1

an
=

(n + 1)!
(n + 1)n+1

· nn

n!
=

(
n

n + 1

)n

=
1(

1 + 1
n

)n

which is less than 1 for all n and which decreases to the limit L = 1
e . From inequality (2) we get

(after some simplification)

Sn +
n!
nn

1
e− 1

< S < Sn +
n!

(n + 1)n − nn
.

Using n = 10 gives 1.8798382 < S < 1.8798548.

Approximating the Sum of an Alternating Series

Let S =
∞∑

n=1
(−1)n+1an and let the nth partial sum be Sn =

n∑
k=1

(−1)k+1ak. We assume that (an) is

a positive decreasing sequence that converges to 0.

1. The standard error bound is given by

Sn − an+1 < S < Sn + an+1 (5)
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2. Suppose the sequence defined by bn = an − an+1 decreases monotonically to 0. (One way to
achieve this is if an = f(n) where f is positive with a graph that is decreasing asymptotically
to 0 and concave up.) Then

if Sn < S, then Sn +
an+1

2
< S < Sn +

an

2
; (6)

if S < Sn, then Sn −
an

2
< S < Sn −

an+1

2
. (7)

Both of these can be summarized by the inequality

an+1

2
< |S − Sn| <

an

2
.

Inequality (5) is credited to Leibniz and is the error bound described in the BC Calculus Course
Description. Inequalities (6) and (7) are consequences of a proof published in 1962 by Philip
Calabrese, then an undergraduate student at the Illinois Institute of Technology (see reference [2]).
Calabrese proved that |S − Sn| < ε if an ≤ 2ε, and that furthermore, if an = 2ε for some n, then
Sn is the first partial sum within ε of the sum S. See the appendix for the derivation of inequalities
(6) and (7).

Example 6: S =
∞∑

n=1

(−1)n+1 4

2n− 1

This is an alternating series that converges by the alternating series test. If f(x) = 4
2x−1 , then the

graph of f is positive, decreasing to 0, and concave up for x ≥ 1. For odd n, inequality (7) implies
that

Sn −
2

2n− 1
< S < Sn −

2
2n + 1

. (8)

If we wanted to estimate the value of S with error less than 0.0001, the typical method using the
error bound from inequality (5) would use a value of n for which an+1 = 4

2n+1 < 0.0001. This would
require using 20,000 terms. On the basis of inequality (8), however, we can take as an estimate for
S the midpoint of that interval, that is, for odd n,

S ≈ Sn −
1
2

(
2

2n + 1
+

2
2n− 1

)
= Sn −

4n

4n2 − 1
, (9)

with an error less than half the width of the interval. So for an error less than 0.0001, we only need

1
2

(
2

2n− 1
− 2

2n + 1

)
=

2
4n2 − 1

< 0.0001.

The first odd solution is n = 71, just a bit less than 20,000! The estimate from (9) using n = 71 is
S ≈ 3.1415912, with error less than 0.0001. Since S = π, this estimate is actually within 1.4×10−6

of the true value. By the way, the partial sum S71 is approximately 3.1556764.
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Example 7: S =
∞∑

n=0

(−1)n 18n

(2n)!

This is an alternating series that converges by the alternating series test. Let bn = an − an+1. It
is not obvious that the sequence bn decreases monotonically to 0. An investigation with the table
feature of a graphing calculator, however, suggests that this is true for n ≥ 3. We can therefore
use inequality (6) when n is an odd integer greater than 3 (note that inequality (6) holds for odd
n’s because this series starts with n = 0.) Hence

Sn +
1
2

18n+1

(2n + 2)!
< S < Sn +

1
2

18n

(2n)!
for odd n ≥ 3.

With n = 9 we can estimate that S lies in the interval (−0.4526626,−0.4526477)2, an interval of
length 1.49 × 10−5. But wait, we can actually do better than this! Since the terms of this series
decrease so quickly because of the factorial in the denominator, we actually have an+1 < 1

2an for
n ≥ 3. So if we combine inequalities (5) and (6), we can deduce that for this series,

Sn +
1
2

18n+1

(2n + 2)!
< S < Sn +

18n+1

(2n + 2)!
for odd n ≥ 3.

Now n = 9 gives the interval (−0.4526626,−0.4526618) containing the value of S, an interval of
length 8× 10−7. (Note: What is the exact sum of this series?)
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Appendix

Proof of Inequality (1)

Let S =
∞∑

n=1
an and let Sn =

n∑
k=1

ak. Suppose an = f(n) where the graph of f is positive, decreasing

to 0, and concave up, and the improper integral
∫∞
1 f(x) dx converges. The series converges by the

integral test. Because the graph is concave up, the area of the shaded trapezoid of width 1 shown
in Figure (1) is greater than the area under the curve. Therefore

2For negative endpoints, round down the left endpoint and truncate the right endpoint.
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Figure 1 Figure 2

∫ n+2

n+1
f(x) dx <

1
2

(an+1 + an+2) .

Hence ∫ ∞

n+1
f(x) dx <

1
2

(an+1 + an+2) +
1
2

(an+2 + an+3) +
1
2

(an+3 + an+4) + · · ·

=
1
2
an+1 + an+2 + an+3 + · · ·

= S − Sn −
1
2
an+1

In Figure (2), the graph of f lies above that tangent line at x = n + 1 (because of the positive
concavity) and therefore also lies above the continuation of the secant line between x = n + 1 and
x = n + 2. This implies that the area of the shaded trapezoid in Figure (2) of width 1 between
x = n and x = n + 1 is less than the area under the curve, and so∫ n+1

n
f(x) dx > an+1 +

1
2

(an+1 − an+2) .

Hence∫ ∞

n
f(x) dx > an+1 +

1
2

(an+1 − an+2) + an+2 +
1
2

(an+2 − an+3) + an+3 +
1
2

(an+3 − an+4) + · · ·

=
1
2
an+1 + an+1 + an+2 + an+3 + · · ·

=
1
2
an+1 + S − Sn

Proof of Inequalities (2) and (3)

Let S =
∞∑

n=1
an and let Sn =

n∑
k=1

ak. Suppose (an) is a positive decreasing sequence and lim
n→∞

an+1

an
=

L < 1, where the ratios decrease to L. The series converges by the ratio test.
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Let r =
an+1

an
< 1. Then

ak+1

ak
< r for all k ≥ n. Hence

an+1 < anr

an+2 < an+1r < anr2

an+3 < an+2r < anr3

...

We therefore conclude that

S − Sn =
∞∑

k=n+1

ak =
∞∑

k=1

an+k <

∞∑
k=1

anrk =
anr

1− r
=

an+1

1− an+1

an

.

But we also have L <
ak+1

ak
for all k ≥ n. By a similar argument as above,

S − Sn =
∞∑

k=n+1

ak =
∞∑

k=1

an+k >

∞∑
k=1

anLk = an
L

1− L
.

Combining these two results gives inequality (2). A similar argument for the inequalities with r
and L reversed proves inequality (3).

Proof of Inequalities (6) and (7)

Let S =
∞∑

n=1
(−1)n+1an and let Sn =

n∑
k=1

(−1)k+1ak, where (an) is positive decreasing sequence

that converges to 0. Let bn = an − an+1, where we assume that the sequence (bn) also decreases
monotonically to 0. Then

S = Sn + (−1)n (bn+1 + bn+3 + bn+5 + · · · )

and
S = Sn−1 + (−1)n+1 (bn + bn+2 + bn+4 + · · · ) .

Because the sequence (bn) decreases,

|S − Sn| = bn+1 + bn+3 + bn+5 + · · · < bn + bn+2 + bn+4 + · · · = |S − Sn−1| .

Therefore |S − Sn| < |S − Sn−1|. Similarly, |S − Sn+1| < |S − Sn| . But S lies between the succes-
sive partial sums, so it follows that

an = |Sn − Sn−1| = |S − Sn|+ |S − Sn−1| > 2 |S − Sn|

and
an+1 = |Sn+1 − Sn| = |S − Sn+1|+ |S − Sn| < 2 |S − Sn| .

Combining these two results shows that

an+1

2
< |S − Sn| <

an

2

from which inequalities (6) and (7) can be obtained.
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