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Symmetric Fractals 
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F
ractals such as the Sierpinski triangle, the 
Koch curve, and the Heighway dragon, 
shown in figure 1, are constructed using 
simple rules, yet they exhibit beautifully 
intricate and complex patterns. 

  All three fractals possess self-similarity—that is, the 
fractal is composed of smaller copies of itself. But only 
the fi rst two fractals have symmetries. In this article 
we show how to use group theory, which is often used 
to describe the symmetries of objects, to create sym-
metric fractals.

Iterated Function Systems
Fractals such as those in fi gure 1 can be constructed 
using sets of functions called iterated function systems 
(IFS). The functions in an IFS have a scaling factor 
less than 1, a rotation, and a translation, which makes 
them contractive affi ne transformations. 

For instance, the IFS for the Heighway dragon is 
the set of functions  where h1 is a scal-
ing by  and a counterclockwise rotation by 
45° around the origin, while h2 is also a scaling by r 
but with a counterclockwise rotation by 135° and a 

horizontal translation by 1. The dragon is the unique 
set A, called the attractor of the IFS, that satis-
fi es  In fi gure 1, h1(A) is red and 
h2(A) is blue. Both subsets are copies of the Heighway 
dragon scaled by a factor of r. 

Bringing in Abstract Algebra
In Symmetry in Chaos: A Search for Pattern 
in Mathematics, Art and Nature (1992, Oxford 
University Press), Michael Field and Martin 
Golubitsky showed how to generate a symmetric 
fractal from a single affi ne transformation and a  
cyclic group Zn or a dihedral group Dn—groups that 
students encounter in an abstract algebra course. As 
we shall see, their method applies equally well when 
applied to an iterated function system.

First, we need some basic facts about Zn and Dn. 
The group Zn consists of the rotational symmetries of 
a regular n-sided polygon. We will let the n elements 
of Zn correspond to counterclockwise rotations about 
the origin (which corresponds to the center of the 
polygon) through angles that are integer multiples of 
360°/n.

Creating Symmetric 
Fractals

Figure 1. 
Clockwise 
from far left, 
the Sierpinski 
triangle, 
the Koch 
curve, and 
the Heighway 
dragon.
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The group Dn consists of all 2n symmetries of a 
regular n -sided polygon. We take these to be the n 
rotations in Zn and refl ections about n lines through 
the origin that meet in angles that are integer multi-
ples of 180°/n. Figure 2 shows the lines of symmetry 
for an equilateral triangle and a square. The group 
D2 is an exception since there is no regular polygon 
with two sides. It is known as the Klein four-group, 
and the four elements are the identity, a vertical re-
fl ection, a horizontal refl ection, and a 180° rotation.

Given any IFS, we can form a new one by composing 
each element of the group (Zn or Dn) with each func-
tion in the IFS. For instance, let  where e is 
the identity and g is the 180° rotation about the origin. 
Composing elements of Z2 w  ith elements in the IFS for 
the Heighway dragon, H, yields the IFS 

All four functions in this IFS have the same scal-
ing factor  because the only change—if any—is 
a 180° rotation. So, in addition to the original 
counterclockwise rotations of 45° and 135° from f1 
and f2, the elements f3 and f4 have counterclock-
wise rotations of 225° and 315°. Also, f2 and f4 
include horizontal translations by 1 and  re-
spectively. The unique attractor for this new IFS, 
B, which we call the Z2 Heighway dragon, satisfi es 

 See fi gure 3.
Rotating B by 180° is the same as applying g from 

Z2 to the set B. Because  is the identity and 
 we have

This shows that the Z2 Heighway dragon has twofold 
(or 180°) rotational symmetry.

In fi gure 3 we see only three scaled versions of the 
attractor, but four sets are in the union. Because f1 
and f3 have the same scaling factor, and they rotate 
B by 45° and 225° counterclockwise, respectively, and 
B has 180° rotational symmetry, then  
This is the red set. 

Coloring a Fractal with Pixel Counting
One of the methods for generating the attractor of 
an iterated function system on a computer is to use 
a random algorithm known as the chaos game. First, 

we choose an initial point x0 in the attractor. Then 
we choose a function f from the IFS at random (with 
a certain probability), and then we plot 
which lies in the attractor. 

Next, we choose a function from the IFS at ran-
dom again, apply it to x1, and obtain another point 
in the attractor, x2. Repeat this process of randomly 
choosing a function, plugging in the previous point, 
then plotting the new point—millions of times. The 
sequence of points fi lls out the attractor. 

In fact, it is not necessary to start with a point in 
the attractor. Any point suffi ces as long as we wait 
long enough during the iterative process to start 
plotting the points. This allows time for the sequence 
of points to converge toward the attractor.

We can color a point based on which function 
was used to compute it. This is how we colored the 
fractals in fi gure 1. For example, the points in the 
Heighway dragon computed using h1 are red, and the 

Figure 2. The groups D3 and D4 consist of rotations 
about the centers of the equilateral triangle and the 

symmetry.

Figure 3. The Z2 Heighway dragon.
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points computed using h2 are blue. 
Of course, even the highest resolution computer 

screen has only fi nitely many points, or pixels. A 
single pixel can represent infi nitely many points in 
the attractor. An alternative coloring scheme is to 
color a pixel based on how many points in the ran-
dom sequence land in that pixel. 

Figure 4 shows an image of the Z2 Heighway dragon 
colored in this way. The color gradient varies from 
gold for low pixel counts through various shades 
of dark orange to pale orange as the pixel counts 
increase. Some experimentation is needed to fi nd 
a good color gradient and the corresponding pixel 
counts. Factors to take into account include the size 
of the fi nal image, the resolution of the computer 
screen, the number of points to be plotted, and the 
probabilities assigned to the functions in the IFS. But 

an appropriate choice helps to vividly illustrate the 
symmetry of the attractor.

Dragons and More
The Heighway dragon is just one example of a larger 
class of dragon fractals. Another example  is the 
golden dragon curve, so named because its fractal 
dimension is the golden ratio. Figure 5 shows the 
golden dragon (formed from an IFS consisting of two 
functions) on the left and the attractor obtained by 
composing the cyclic group Z2 with this IFS. We 
used the same pixel coloring as for the Z2 Heighway 
dragon. This attractor has 180° rotational symmetry.

Figure 6 shows the attractor obtained by composing 
D2 with the IFS for the Koch curve, colored from red 
to violet using pixel counting. The group D2 gives the 
fractal 180° rotational symmetry and refl ective sym-
metry across the horizontal and vertical lines through 
its center.

Figure 7 shows the fractals we obtain when we com-
pose Z4 and D4 with the IFS for the Koch curve. The 
former has 16 functions that produce an attractor 

Figure 4. The Z2 Heighway dragon colored by pixel 
counting.

Figure 5. Golden dragon (above) and Z2 golden 
dragon (right).

Figure 6. The D2 Koch curve.



with fourfold rotational symmetry. The latter has 32 
functions with an attractor displaying the D4 symme-
try of a square. 

Finally, fi gure 8 and 9 illustrate that if the original 
attractor already has some symmetry, then the at-
tractor constructed by composing with Zn or Dn may 
produce additional symmetries beyond those guaran-
teed from the group used to build it. 

Figure 8 comes from composing Z3 with the 
Sierpinski triangle IFS. It has D6 symmetry because 
the attractor is a fi lled-in hexagon. The initial IFS 
used for fi gure 9 generated the self-contacting sym-
metric binary tree with angle 45°, which is the black 
tree superimposed on the color fractal. We composed 
Z4 with the IFS to form an IFS whose attractor is 
shown. It has D4 symmetry.

Further Reading
For more on symmetric fractals, see “Symmetric 
Fractals” (chapter 7) in Field and Golubitsky’s 
Symmetry in Chaos; an updated second edition of 
their book came out in 2009 (SIAM).

More details can also be found at the author’s web-
site, ecademy.agnesscott.edu/~lriddle/ifs/ifs.htm.

All fractal images shown here were drawn with the 
Windows program IFS Construction Kit available at 
ecademy.agnesscott.edu/~lriddle/ifskit/. 

Larry Riddle teaches mathematics at Agnes Scott 
College, where he creates digital images of symmet-
ric fractals as well as cross-stitch embroidery fractal 
artwork.
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Figure 7. The Z4 Koch curve (left) and the D4 Koch curve (right).

Figure 8. The Z3 Sierpinski triangle.
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Figure 9. The Z4 symmetric binary tree.




