E) None of the above

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

A small country consists of four states. The population of State A is 67,200, the population of State B is 78,300, the population of State C is 73,800, and the population of State D is 80,700. The total number of seats in the legislature is 100.

| 1) The standard divisor is                                                         | 1) |
|------------------------------------------------------------------------------------|----|
| A) 1000.                                                                           |    |
| B) 10,000.                                                                         |    |
| C) 30,000.                                                                         |    |
| D) 3000.                                                                           |    |
| E) None of the above                                                               |    |
| 2) The standard quota for State C is                                               | 2) |
| A) 26.9.                                                                           |    |
| B) 25.7.                                                                           |    |
| C) 26.1.                                                                           |    |
| D) 24.6.                                                                           |    |
| E) None of the above                                                               |    |
| ,                                                                                  |    |
| 3) Under Hamilton's method, the apportionments to each state are                   | 3) |
| A) State A: 22 seats; State B: 26 seats; State C: 25 seats; State D: 27 seats.     |    |
| B) State A: 22 seats; State B: 26 seats; State C: 24 seats; State D: 28 seats.     |    |
| C) State A: 23 seats; State B: 26 seats; State C: 24 seats; State D: 27 seats.     |    |
| D) State A: 22 seats; State B: 26 seats; State C: 24 seats; State D: 26 seats.     |    |
| E) None of the above                                                               |    |
| 4) Using a divisor of $D = 2925$ , the modified quotas (to two decimal places) are | 4) |
| A) State A: 22.40; State B: 26.10; State C: 24.60; State D: 26.90.                 |    |
| B) State A: 22.58; State B: 26.67; State C: 24.93; State D: 27.28.                 |    |
| C) State A: 22.97; State B: 26.77; State C: 25.23; State D: 27.59.                 |    |
| D) State A: 22.74; State B: 26.86; State C: 25.12; State D: 27.43.                 |    |
| E) None of the above                                                               |    |
|                                                                                    |    |
| 5) Under Jefferson's method, the apportionments to each state are                  | 5) |
| A) State A: 22 seats; State B: 26 seats; State C: 24 seats; State D: 28 seats.     |    |
| B) State A: 22 seats; State B: 26 seats; State C: 24 seats; State D: 26 seats.     |    |
| C) State A: 22 seats; State B: 26 seats; State C: 25 seats; State D: 27 seats.     |    |
| D) State A: 23 seats; State B: 26 seats; State C: 24 seats; State D: 27 seats.     |    |

| 3194         | 9066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8192                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| eats; State  | D: 27 se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eats.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| state are    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    | 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | D: 28 se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eats.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    | 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ate D: 26.90 | ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ate D: 27.28 | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ate D: 26.48 | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ate D: 26.33 | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | ate D: 26.33 ate D: 26.43 ate D: 27.28 ate D: 26.90 ate are eats; State | ate D: 26.33. ate D: 26.48. ate D: 27.28. ate D: 26.90. ate are eats; State D: 28 se eats; State D: 27 se eats; State D: 26 se eats; State D: 26 se eats; State D: 27 se eats; State D: 28 se eats; State D: 28 se eats; State D: 26 se eats; State D: 27 se eats; State D: 28 se eats; State D: 28 se eats; State D: 26 se eats; State D: 27 se eats; State D: 27 se | ate D: 26.48.  ate D: 27.28.  ate D: 26.90.  ate are eats; State D: 28 seats. eats; State D: 27 seats. eats; State D: 26 seats. eats; State D: 26 seats. eats; State D: 27 seats. eats; State D: 27 seats. eats; State D: 27 seats. eats; State D: 28 seats. eats; State D: 28 seats. eats; State D: 26 seats. eats; State D: 27 seats. | ate D: 26.33. ate D: 26.48. ate D: 27.28. ate D: 26.90.  ate are eats; State D: 28 seats. eats; State D: 27 seats. eats; State D: 26 seats. eats; State D: 26 seats. eats; State D: 27 seats. eats; State D: 28 seats. eats; State D: 28 seats. eats; State D: 28 seats. eats; State D: 26 seats. eats; State D: 27 seats. |

|                   | Route                              | A    | В    | C    | D    |    |
|-------------------|------------------------------------|------|------|------|------|----|
|                   | Daily average number of passengers | 3194 | 9066 | 4548 | 8192 |    |
| 9) The standard d | ivisor is                          |      |      |      |      | 9) |
| A) 5000.          |                                    |      |      |      |      |    |
| B) 250.           |                                    |      |      |      |      |    |
| C) 500.           |                                    |      |      |      |      |    |
| D) 25,000.        |                                    |      |      |      |      |    |
| E) None of        | the above                          |      |      |      |      |    |
|                   |                                    |      |      |      |      |    |

e standard divisor represents
A) the daily average number of passengers per 50 buses.
B) the number of passengers that one bus is able to transport per day.
C) the daily average number of passengers per bus.
D) the number of buses required for 25,000 passengers.
E) None of the above

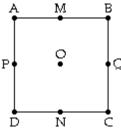
| 11) The standard quota of Route A (to 2 decimal places) is                                                                            | 11) |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|
| A) 7.14.                                                                                                                              |     |
| B) 12.78.                                                                                                                             |     |
| C) 6.39.                                                                                                                              |     |
| D) 63.88.                                                                                                                             |     |
| E) None of the above                                                                                                                  |     |
| 12) In process of applying Hamilton's method, the route receiving the "extra" bus is                                                  | 12) |
| A) Route B.                                                                                                                           |     |
| B) Route C.                                                                                                                           |     |
| C) Route A.                                                                                                                           |     |
| D) Route D.                                                                                                                           |     |
| E) None of the above                                                                                                                  |     |
| 13) Find the apportionment of the buses among the routes using Hamilton's method. A) Route A: 7; Route B: 18; Route C: 9; Route D: 16 | 13) |
| B) Route A: 7; Route B: 18; Route C: 10; Route D: 16                                                                                  |     |
| C) Route A: 6; Route B: 18; Route C: 9; Route D: 17                                                                                   |     |
| D) Route A: 7; Route B: 17; Route C: 9; Route D: 17                                                                                   |     |
| E) None of the above                                                                                                                  |     |
| 14) Find the apportionment of the buses among the routes using Jefferson's method.                                                    | 14) |
| A) Route A: 7; Route B: 18; Route C: 10; Route D: 16                                                                                  |     |
| B) Route A: 6; Route B: 18; Route C: 9; Route D: 17                                                                                   |     |
| C) Route A: 7; Route B: 17; Route C: 9; Route D: 17                                                                                   |     |
| D) Route A: 7; Route B: 18; Route C: 9; Route D: 16                                                                                   |     |
| E) None of the above                                                                                                                  |     |
| 15) Find the apportionment of the buses among the routes using Adams' method.                                                         | 15) |
| A) Route A: 7; Route B: 17; Route C: 9; Route D: 17                                                                                   |     |
| B) Route A: 6; Route B: 18; Route C: 9; Route D: 17                                                                                   |     |
| C) Route A: 7; Route B: 18; Route C: 9; Route D: 16                                                                                   |     |
| D) Route A: 7; Route B: 18; Route C: 10; Route D: 16                                                                                  |     |
| E) None of the above                                                                                                                  |     |
| 16) Find the apportionment of the buses among the routes using Webster's method.                                                      | 16) |
| A) Route A: 7; Route B: 18; Route C: 10; Route D: 16                                                                                  |     |
| B) Route A: 7; Route B: 17; Route C: 9; Route D: 17                                                                                   |     |
| C) Route A: 7; Route B: 18; Route C: 9; Route D: 16                                                                                   |     |
| D) Route A: 6; Route B: 18; Route C: 9; Route D: 17                                                                                   |     |
| E) None of the above                                                                                                                  |     |

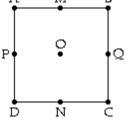
A country has four states. Suppose the population of State 1 is P<sub>1</sub>, the population of State 2 is P<sub>2</sub>, the population of State 3 is P<sub>3</sub>, and the population of State 4 is P<sub>4</sub>. Suppose also that the total number of seats in the legislature is M and the standard divisor is D.

| 17) The value of D is                                                                                                                     | 17)           |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| A) $P_1 + P_2 + P_3 + P_4$ .                                                                                                              |               |
| B) $\frac{P_1 \times P_2 \times P_3 \times P_4}{M}$ .                                                                                     |               |
| M.                                                                                                                                        |               |
| C) $\frac{P_1 + P_2 + P_3 + P_4}{M}$ .                                                                                                    |               |
| $^{\prime}$ M                                                                                                                             |               |
| D) $\frac{M}{P_1 + P_2 + P_3 + P_4}$ .                                                                                                    |               |
| E) None of the above                                                                                                                      |               |
| 18) If q <sub>1</sub> , q <sub>2</sub> , q <sub>3</sub> , and q <sub>4</sub> are the respective standard quotas for the four states, then | 18)           |
| q1 + q2 + q3 + q4 equals                                                                                                                  |               |
| A) the number of seats in the legislature M.                                                                                              |               |
| B) 0.                                                                                                                                     |               |
| C) the total population $P_1 + P_2 + P_3 + P_4$ .                                                                                         |               |
| D) the standard divisor D.                                                                                                                |               |
| E) None of the above                                                                                                                      |               |
| 19) If J is the modified divisor used for Jefferson's method, then                                                                        | 19)           |
| A) J can be less than, equal to, or greater than D.                                                                                       | ′ <del></del> |
| B) J is always greater than or equal to D.                                                                                                |               |
| C) J is always equal to D.                                                                                                                |               |
| D) J is always less than or equal to D.                                                                                                   |               |
| E) None of the above                                                                                                                      |               |
| Solve the problem.                                                                                                                        |               |
| 20) Which of the following apportionment methods does not violate the quota rule?                                                         | 20)           |
| A) Adams' method                                                                                                                          |               |
| B) Hamilton's method                                                                                                                      |               |
| C) Jefferson's method                                                                                                                     |               |
| D) Webster's method                                                                                                                       |               |
| E) None of the above                                                                                                                      |               |
| 21) Which of the following apportionment methods can produce the Population paradox?                                                      | 21)           |
| A) Adams' method                                                                                                                          | , <u> </u>    |
| B) Jefferson's method                                                                                                                     |               |
| C) Webster's method                                                                                                                       |               |
| D) Hamilton's method                                                                                                                      |               |

E) None of the above

| 22) | In a certain apportionment problem   | , State X has   | a standard | quota of | 48.9. | The f | inal |
|-----|--------------------------------------|-----------------|------------|----------|-------|-------|------|
|     | apportionment to State X is 50 seats | . This is calle | ed         |          |       |       |      |


22) \_\_\_


- A) an upper-quota violation.
- B) the population paradox.
- C) the Alabama paradox.
- D) a lower-quota violation.
- E) None of the above
- 23) A father wishes to distribute 16 pieces of candy among his 3 children (Abe, Betty, and Cindy) based on the number of hours each child spends doing chores around the house. Using a certain apportionment method, he has determined that Abe is to get 9 pieces of candy, Betty is to get 4 pieces, and Cindy is to get 3 pieces. However, just before he hands out the candy, he discovers that he has 17 pieces (not 16) of candy. When he apportions the 17 pieces of candy using the same apportionment method, Abe ends up with 10 pieces, Betty with 5 pieces, and Cindy with 2 pieces. This is an example of



- A) the new states paradox.
- B) the Alabama paradox.
- C) a violation of the quota rule.
- D) the population paradox.
- E) None of the above

The figure below is a square ABCD with center O. (M, N, P, and Q are the midpoints of the sides.)

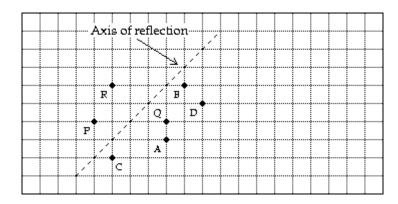




24) Which of the following reflections is not a symmetry of the square?

24)

- A) the reflection with axis the line passing through A and C
- B) the reflection with axis the line passing through P and Q
- C) the reflection with axis the line passing through A and B
- D) the reflection with axis the line passing through M and N
- E) All of the above are symmetries of the square.


25)

- 25) Which of the following rotations is a symmetry of the square?
  - A) a 90° clockwise rotation with center P
  - B) a 90° clockwise rotation with center O
  - C) a 60° clockwise rotation with center O
  - D) a 90° clockwise rotation with center A
  - E) None of the above

| 26) Which of the following translations is a symmetry of the square?                                     | 26) |
|----------------------------------------------------------------------------------------------------------|-----|
| A) a translation that sends A to C                                                                       |     |
| B) a translation that sends A to B                                                                       |     |
| C) a translation that sends P to Q                                                                       |     |
| D) a translation that sends A to O                                                                       |     |
| E) None of the above                                                                                     |     |
|                                                                                                          |     |
| 27) The image of A under the reflection with axis the line passing through M and P is                    | 27) |
| A) C.                                                                                                    |     |
| B) D.                                                                                                    |     |
| C) B.                                                                                                    |     |
| D) O.                                                                                                    |     |
| E) None of the above                                                                                     |     |
| 28) The image of A under a 90° clockwise rotation with center O is                                       | 28) |
| A) C.                                                                                                    |     |
| B) B.                                                                                                    |     |
| C) D.                                                                                                    |     |
| D) M.                                                                                                    |     |
| E) None of the above                                                                                     |     |
| 20) A topolation and a the point A to the point O. The image of B and on this topolation is              | 20) |
| 29) A translation sends the point A to the point Q. The image of P under this translation is A) O.       | 29) |
| B) B.                                                                                                    |     |
| C) C.                                                                                                    |     |
| D) N.                                                                                                    |     |
|                                                                                                          |     |
| E) None of the above                                                                                     |     |
| 30) A glide reflection sends the point A to the point Q and the point P to the point C. The image of B   | 30) |
| under this glide reflection is                                                                           |     |
| A) P.                                                                                                    |     |
| B) D.                                                                                                    |     |
| C) A.                                                                                                    |     |
| D) N.                                                                                                    |     |
| E) None of the above                                                                                     |     |
| 31) A glide reflection sends the point A to the point Q and the point P to the point C. The axis of this | 31) |
| glide reflection is a line passing through the points                                                    |     |
| A) P and Q.                                                                                              |     |
| B) M and N.                                                                                              |     |
| C) A and B.                                                                                              |     |
| D) A and Q.                                                                                              |     |
| F) None of the above                                                                                     |     |

## Solve the problem.

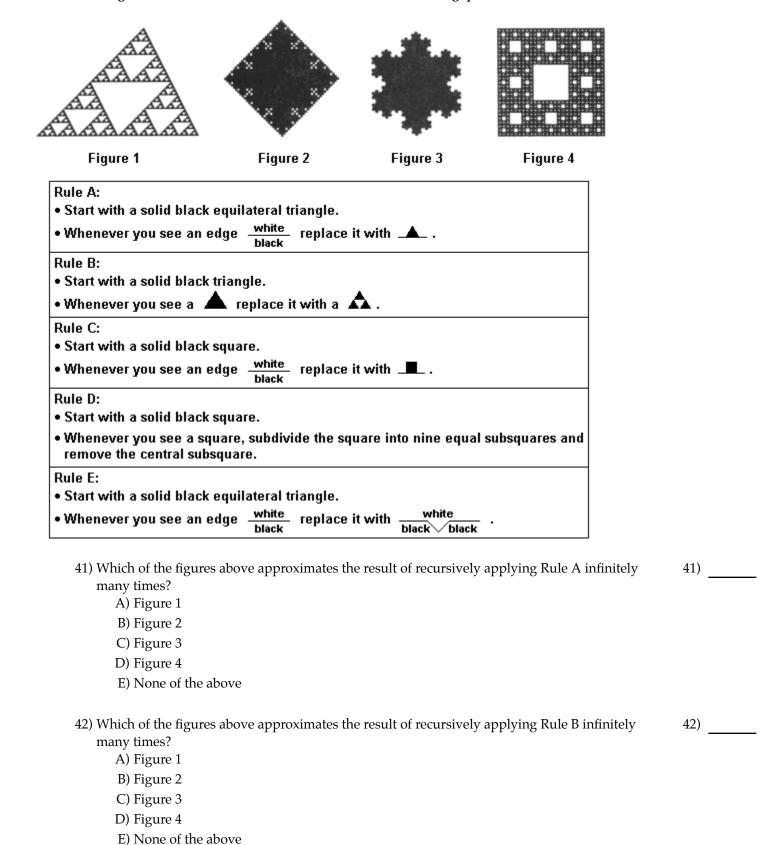
- 32) A 7216° clockwise rotation is equivalent to
  - A) a 344° counterclockwise rotation.
  - B) a 376° clockwise rotation.
  - C) a 16° clockwise rotation.
  - D) All of the above
  - E) None of the above
- 33) A glide reflection having axis of reflection as shown below sends point P to point Q. The image of point R under this same glide reflection is



- A) A.
- B) B.
- C) C.
- D) D.
- E) None of the above
- 34) The letter C has a symmetry type
  - A) Z<sub>2</sub>.
  - B) D<sub>2</sub>.
  - C) D<sub>1</sub>.
  - D) Z<sub>1</sub>.
  - E) None of the above
- 35) The letter Q has a symmetry type
  - A) Z<sub>2</sub>.
  - B) D<sub>1</sub>.
  - C)  $Z_1$ .
  - D) D<sub>2</sub>.
  - E) None of the above

35) \_\_\_\_\_

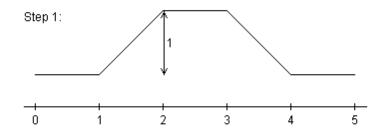
34) \_\_\_\_\_

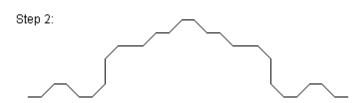

32) \_\_\_\_\_

33)

| 36) The letter Z has a symmetry type             |                     |        |         |        |        |                                 | 36)        |
|--------------------------------------------------|---------------------|--------|---------|--------|--------|---------------------------------|------------|
| A) D <sub>2</sub> .                              |                     |        |         |        |        |                                 |            |
| B) Z <sub>1</sub> .                              |                     |        |         |        |        |                                 |            |
| C) D <sub>1</sub> .                              |                     |        |         |        |        |                                 |            |
| D) Z <sub>2</sub> .                              |                     |        |         |        |        |                                 |            |
| E) None of the above                             |                     |        |         |        |        |                                 |            |
| 37) If an object has a 30° clockwise rot         | ation               | as one | e of it | s sym  | metrie | es, then it must also have as a | a 37)      |
| symmetry                                         |                     |        |         |        |        |                                 |            |
| A) a 90° clockwise rotation.                     |                     |        |         |        |        |                                 |            |
| B) a 45° clockwise rotation.                     |                     |        |         |        |        |                                 |            |
| C) a translation.                                |                     |        |         |        |        |                                 |            |
| D) a reflection.                                 |                     |        |         |        |        |                                 |            |
| E) None of the above                             |                     |        |         |        |        |                                 |            |
| 38) The complete symmetries of the be            |                     | -      | rn      | ZZZ    | ZZZZ   | Z are the identity and          | 38)        |
| A) translations and 180° rotations               |                     |        |         |        |        |                                 |            |
| B) translations and 45° rotation                 |                     | •      | _       |        |        |                                 |            |
| C) translations and horizontal                   |                     |        | •       |        |        |                                 |            |
| D) translations and vertical ref                 | lectior             | ns onl | y.      |        |        |                                 |            |
| E) None of the above                             |                     |        |         |        |        |                                 |            |
| 39) The complete symmetries of the be            | order               | pattei | rn      | pbq    | dpb    | q d p b q d are the identit     | ty and 39) |
| A) translations and glide reflec                 |                     |        |         | 1 1    | 1      |                                 | ,          |
| B) translations and 180° rotations               | ons on              | ly.    |         |        |        |                                 |            |
| C) translations, glide reflection                | s, and              | l 180° | rotati  | ions o | nly.   |                                 |            |
| D) translations only.                            |                     |        |         |        |        |                                 |            |
| E) None of the above                             |                     |        |         |        |        |                                 |            |
|                                                  |                     |        |         |        |        |                                 |            |
| 40) The complete symmetries of the w             | /allpa <sub>]</sub> | per pa | attern  | show   | n belo | ow are the identity and         | 40)        |
|                                                  |                     |        | :       |        |        |                                 |            |
|                                                  | В                   | В      | В       | В      | В      |                                 |            |
|                                                  | В                   | В      | В       | В      | В      |                                 |            |
| ••                                               | В.                  | В      | В       | В      | в.     | ••                              |            |
|                                                  | В                   | В      | В       | В      | В      |                                 |            |
|                                                  | _                   |        | :       |        |        |                                 |            |
|                                                  |                     |        | •       |        |        |                                 |            |
| A) translations and vertical ref                 | lectior             | ns onl | y.      |        |        |                                 |            |
| B) translations and 180° rotations               | ons on              | ly.    |         |        |        |                                 |            |
| C) translations and horizontal reflections only. |                     |        |         |        |        |                                 |            |

D) translations only.E) None of the above


Refer to the figures and recursive rules below to answer the following question(s).




| 43) Which of the figures above approximates the result of recursively applying Rule C infinitely many times?                                                     | 43) _ |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| A) Figure 1                                                                                                                                                      |       |  |
| B) Figure 2                                                                                                                                                      |       |  |
| C) Figure 3                                                                                                                                                      |       |  |
| D) Figure 4                                                                                                                                                      |       |  |
| E) None of the above                                                                                                                                             |       |  |
| 44) Which of the figures above approximates the result of recursively applying Rule D infinitely many times?                                                     | 44) _ |  |
| A) Figure 1                                                                                                                                                      |       |  |
| B) Figure 2                                                                                                                                                      |       |  |
| C) Figure 3                                                                                                                                                      |       |  |
| D) Figure 4                                                                                                                                                      |       |  |
| E) None of the above                                                                                                                                             |       |  |
| 45) Which of the figures above approximates the result of recursively applying Rule E infinitely many times?                                                     | 45) _ |  |
| A) Figure 1                                                                                                                                                      |       |  |
| B) Figure 2                                                                                                                                                      |       |  |
| C) Figure 3                                                                                                                                                      |       |  |
| D) Figure 4                                                                                                                                                      |       |  |
| E) None of the above                                                                                                                                             |       |  |
| Solve the problem.                                                                                                                                               |       |  |
| 46) If the area of the starting triangle in the construction of the Koch snowflake is 5, then the area of the Koch snowflake is                                  | 46) _ |  |
| A) 8.                                                                                                                                                            |       |  |
| B) 10.                                                                                                                                                           |       |  |
| C) infinite.                                                                                                                                                     |       |  |
| D) 0.                                                                                                                                                            |       |  |
| E) None of the above                                                                                                                                             |       |  |
| 47) Suppose that the perimeter of the starting triangle in the construction of the Koch snowflake is 5. Then the length of the boundary of the Koch snowflake is | 47) _ |  |
| A) 0.                                                                                                                                                            |       |  |
| B) infinite.                                                                                                                                                     |       |  |
| C) 10.                                                                                                                                                           |       |  |
| D) 8.                                                                                                                                                            |       |  |
| E) None of the above                                                                                                                                             |       |  |
|                                                                                                                                                                  |       |  |

The following question(s) refer to a fractal defined by the recursive procedure :

- Start with a line segment of length 5.
- Step 1: Replace the line segment with \_\_\_\_\_ (see figure below).
- Step 2: Replace each line segment in the previous figure with \_\_\_\_\_ (see figure below).
- Step 3, 4, 5, etc.: Replace each line segment in the previous figure with \_\_\_\_\_\_.





48) What is the length of the figure at step 1 of the construction?

48)

- A) 5
- B) 3 +  $2\sqrt{2}$
- C)  $5\sqrt{2}$
- D)  $7 + 2\sqrt{2}$
- E) None of the above
- 49) How many square units of area are added above the original horizontal line segment at step 1 of 49) \_\_\_\_\_ the construction?
  - A) 4
  - B) 1
  - C) 3
  - D) 2
  - E) None of the above
- 50) How many line segments appear in step 2 of the construction?

50)

- A) 52
- B) 5
- C) 25
- D)  $5 \times 2$
- E) None of the above

51) How many line segments appear in step 4 of the construction?

51) \_\_\_\_\_

- A)  $5 \times 4$
- B) 45
- C) 5
- D) 54
- E) None of the above

52) What is the length of the leftmost line segment in step 3 of the construction?

52)

- A)  $\left(\frac{1}{5}\right)^3$
- $B)\left(\frac{1}{5}\right)^2$
- C)  $\frac{1}{3}$
- $D)\left(\frac{1}{3}\right)^5$
- E) None of the above

Solve the problem.

53) If a = 1 + i and b = i, then ab = i

53) \_\_\_\_\_

54) \_\_\_\_

- A) -1 + i.
- B) 2.
- C) 1 + i.
- D) 0.
- E) None of the above

To answer the following question(s), refer to the Mandelbrot replacement process described by:

• Start: Choose an arbitrary complex number s, called the seed of the Mandelbrot sequence. Set the seed s to be the initial term of the sequence ( $s_0 = s$ ).

• Procedure M: To find the next term in the sequence, square the preceding term and add the seed ( $s_{N+1} = s_N^2 + s$ ).

54) For the seed s = 2, the second and third values of the sequence ( $s_1$  and  $s_2$ ) are given by

- A) 6 and 42.
- B) 2 and 2.
- C) 4 and 16.
- D) 6 and 38.
- E) None of the above

| 55) For the seed $s = -3$ , the Mandelbrot replacement process                                          | 55)   |  |
|---------------------------------------------------------------------------------------------------------|-------|--|
| A) gives values that have no pattern.                                                                   |       |  |
| B) goes off to infinity.                                                                                |       |  |
| C) is periodic.                                                                                         |       |  |
| D) gives values that get closer and closer to -1.                                                       |       |  |
| E) None of the above                                                                                    |       |  |
| 56) Suppose that when we apply the Mandelbrot replacement process we get $s_6 = 2$ and $s_7 = 2$ . Then | 56)   |  |
| the seed s is                                                                                           |       |  |
| A) $s = -1$ .                                                                                           |       |  |
| B) $s = 2$ .                                                                                            |       |  |
| C) $s = 1$ .                                                                                            |       |  |
| D) $s = -2$ .                                                                                           |       |  |
| E) None of the above                                                                                    |       |  |
| 57) If we apply the Mandelbrot replacement process to the seed $s=2i$ , then $s_1=$                     | 57)   |  |
| A) -4.                                                                                                  |       |  |
| B) -4 + 2i.                                                                                             |       |  |
| C) 4i.                                                                                                  |       |  |
| D) -2i.                                                                                                 |       |  |
| E) None of the above                                                                                    |       |  |
| Solve the problem.                                                                                      |       |  |
| 58) Of the following objects in nature, which one could never have symmetry of scale?                   | 58) _ |  |
| A) a mountain                                                                                           |       |  |
| B) a coastline                                                                                          |       |  |
| C) a soap bubble                                                                                        |       |  |
| D) a cloud                                                                                              |       |  |
| E) All of the above could have symmetry of scale.                                                       |       |  |
| 59) Which of the following objects has exact symmetry of scale?                                         | 59)   |  |
| A) the Koch snowflake                                                                                   |       |  |
| B) a tree                                                                                               |       |  |
| C) the Mandelbrot set                                                                                   |       |  |
| D) a head of cauliflower                                                                                |       |  |

E) None of the above

## Answer Key

Testname: 101PRACMT2

- 1) D
- 2) D
- 3) A
- 4) C
- 5) C
- 6) A
- 7) B
- 8) A
- 9) C
- 10) C
- 11) C
- 12) C
- 13) A
- 14) B
- 15) C
- 16) D
- 17) C
- 18) A
- 19) D
- 20) B
- 21) D
- 22) A
- 23) B
- 24) C
- 25) B
- 26) E
- 27) D
- 28) B
- 29) C
- 30) A
- 31) B
- 32) D
- 33) D
- 34) C
- 35) C
- 36) D
- 37) A
- 38) A
- 39) B
- 40) C
- 41) C
- 42) A 43) B
- 44) D
- 45) E
- 46) A
- 47) B
- 48) B
- 49) D

Answer Key Testname: 101PRACMT2

- 50) A 51) D
- 52) B
- 53) A 54) D
- 55) B
- 56) D
- 57) B
- 58) C 59) A