Math 119 Midterm \#2 Solutions

1. The region bounded by the curves $y=e^{x}, y=0, x=-1$, and $x=1$ is rotated about the x-axis. Compute the volume of the resulting solid.
(This is problem 8.2.5 from your homework.) The volume of each vertical slice of width $d x$ is $\pi y^{2} d x=\pi\left(e^{x}\right)^{2} d x=\pi e^{2 x} d x$. The total volume is the sum (integral) of all the slices, so it's $\int_{-1}^{1} \pi e^{2 x} d x=\left.\frac{\pi}{2} e^{2 x}\right|_{-1} ^{1}=\frac{\pi}{2}\left(e^{2}-e^{-2}\right)$.
2. A monkey, a lion, and a robot have one donut to share. They divide it as follows. First they divide it into fourths, each taking a quarter. Then they divide the leftover quarter into fourths, each taking a quarter, and so on. How much of the donut does the monkey end up with?

The monkey gets a quarter, plus a quarter of a quarter, plus a quarter of a quarter of a quarter, plus. .., or $1 / 4+(1 / 4)^{2}+(1 / 4)^{3}+(1 / 4)^{4}+\cdots=\frac{1}{4} \cdot \frac{1}{1-\frac{1}{4}}=\frac{1}{4} \cdot \frac{4}{3}=\frac{1}{3}$.
3. Use a second-degree Taylor polynomial to estimate $\cos (-0.1)$.

We'll use a Taylor polynomial centered at 0. $P_{2}(x)=\cos 0+\left(\cos ^{\prime} 0\right) x+\left(\cos ^{\prime \prime} 0\right) x^{2} / 2=$ $1+0 x-1 / 2 x^{2}$. So $\cos (-0.1) \approx P_{2}(-0.1)=1-(-0.1)^{2} / 2=0.995$.
4. Determine whether the following series converge or diverge. Be sure to give reasons!
(a) $\sum_{n=1}^{\infty} \frac{1}{n+1}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n}}$
(c) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$
(d) $\sum_{n=1}^{\infty} \frac{1+2^{n}}{3^{n}}$
(a) diverges (limit comparison to $\sum \frac{1}{n}$) (b) converges (alternating series test) (c) converges (ratio test) (d) converges (ratio test, or limit comparison to the convergent geometric $\sum \frac{2^{n}}{3^{n}}$, or notice that it's the sum of the convergent geometric $\sum \frac{1}{3^{n}}$ and $\sum \frac{26 n}{3^{n}}$)

