Math 119 Midterm #2 Solutions

1. Consider the region bounded by \(y = x^2 \), the \(y \)-axis, and the line \(y = 4 \), with \(x \geq 0 \). Find the volume of the solid obtained by rotating the region about the \(y \)-axis. (Careful: Be sure to rotate about the \(y \)-axis, not the \(x \)-axis.)

The cross sections are disks, so the volume is \(\int_0^4 \pi x^2 \, dy \). We solve for \(x \) in terms of \(y \) to get \(x = \sqrt{y} \), so we plug in and get \(V = \int_0^4 \pi y \, dy = 8\pi \).

2. Use a second-degree Taylor polynomial to approximate \(\ln(1.1) \).

The Taylor polynomial for \(\ln(x) \) at \(x = 1 \) is \(P_2(x) = (x - 1) - \frac{1}{2}(x - 1)^2 \), so \(\ln(1.1) \approx P_2(1.1) = .1 - \frac{1}{2}(.1)^2 = 0.095 \).

3. For several years I’ve been recording the amount of delicious chocolate milk that I drink each day. The data show that the density function of these amounts is given approximately by the function \(p(x) \) (where \(x \) is the amount in gallons). Set up integrals to answer the following questions.
 (a) On what proportion of days do I drink between 4 and 5 gallons of delicious chocolate milk?
 (b) On what proportion of days do I drink 8 or more gallons of delicious chocolate milk?
 (c) On average, how many gallons do I drink per day?

 a) \(\int_4^5 p(x) \, dx \)
 b) \(\int_8^\infty p(x) \, dx \)
 c) \(\int_0^\infty xp(x) \, dx \)

4. This problem deals with the questions of estimating the cumulative effect of a tax cut on a country’s economy. Suppose the government proposes a tax cut totaling $100 million. We assume that all the people who have extra money to spend would spend 80% of it and save 20%. Thus, of the extra income generated by the tax cut, $100(0.8) million = $80 million would be spent and so become extra income to someone else. Assume that these people also spend 80% of their additional income, or $80(0.8) million, and so on. Calculate the total additional spending created by such a tax cut.

 (This is problem 9.2.31 from your homework.)

 This is a geometric series: \((.8)100 + (.8)^2100 + \cdots = 80 \frac{1}{1 - .8} = 400\) million dollars.

5. Find the radius of convergence of the power series \(\sum_{n=1}^\infty \frac{x^n}{n \cdot 3^n} \).

 The radius of convergence is \(\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{\frac{1}{n \cdot 3^n}}{\frac{1}{(n+1) \cdot 3^{n+1}}} = \lim_{n \to \infty} \frac{3 \cdot (n+1)}{n} = 3 \).