COMPLEX VARIABLES PRACTICE FINAL

- 1. For each of the following, give an example of such a function, or explain why it's impossible.
 - (a) f is an analytic function on a domain D whose range is the set of all points (x, y) with $x \ge 0$.
 - (b) f is an analytic function and the maximum of |f| on the set $|z| \le 2$ is attained at z = 0.
- 2. Prove or give a counterexample for each of the following statements.
 - (a) The product of two analytic functions is analytic.
 - (b) The real part of an analytic function is analytic.
- 3. Find a conformal mapping that sends the unit disk $\{z : |z| < 1\}$ to the lower half-plane $\{z : Im(z) < 0\}$, or prove that no such mapping can exist.
- 4. Consider the function f = u + iv, where $u(x + iy) = x^2 + 2xy + y^2$ and $v(x + iy) = x^2 2xy y^2$.
 - (a) Where does f' exist? Where is f analytic?
 - (b) Does there exist an analytic function g whose real part is equal to u? If so, give an example.
- (c) Does there exist an analytic function h whose imaginary part is equal to v? If so, give an example. 5. Prove or disprove:
 - (a) Let D_1 and D_2 be simply connected domains with nonempty intersection. Then $D_1 \cup D_2$ is also simply connected.
 - (b) Let D be a domain and f be analytic on D. Then the image f(D) is also a domain.
- 6. Evaluate the following integrals:
 - (a) $\int_0^\infty \frac{\cos(ax)}{(x^2+b^2)^2} dx$, where *a* and *b* are positive real numbers.
 - (b) $\int_{\gamma} e^{\frac{2}{z}} dz$, where γ is the unit circle oriented counterclockwise.
 - (c) $\int_{\gamma_1} \overline{z} \, dz$ and $\int_{\gamma_2} \overline{z} \, dz$, where γ_1 is the semicircle in the upper half-plane going from -1 to 1, and γ_2 is the polygonal path from -1 to -1 + i to 1 + i to 1. What can you conclude about the function $f(z) = \overline{z}$?
 - (d) $\int_{\gamma} \frac{\sin z}{e^{z^2}} dz$, where γ is the unit circle oriented counterclockwise. (e) $\int_{\gamma} \frac{e^z}{z(z+4)} dz$, where γ is the unit circle oriented counterclockwise.
- 7. Find all solutions to the following equations.
 - (a) $z^2 + (1+i)z = -5i$
 - (b) $e^z = \sqrt{3} i$
- 8. Compute $(i^2)^i$ and $(i)^{2i}$, and conclude that the identity $(z^a)^b = z^{ab}$ does not always hold for complex z, a, and b.
- 9. How many solutions does the equation $z^5 + 6z^2 + 2z + 1 = 0$ have in the annulus $1 \le r \le 2$?
- 10. Let $f(z) = z^4 z$, and let γ be the circle of radius 1/2, centered at the origin, oriented counterclockwise. How many times does the image $f(\gamma)$ wrap around the origin counterclockwise?

Answers:

- 1. (a) Impossible: the range must be an open set (Theorem 1, p. 191).
 - (b) f must be identically constant.
- **2.** (a) True (product rule).
 - (b) False (one example: if f(z) = z, then the real part is u(x + iy) = x, which doesn't satisfy Cauchy-Riemann).
- **3.** Many possibilities; one is $f(z) = \frac{iz+1}{2z+2i}$.
- 4. (a) f' exists only at 0, so f is nowhere analytic.
 - (b) No, because u is not harmonic.

- (c) Yes, because v is harmonic. $h(x+iy) = (-x^2 2xy + y^2) + i(x^2 2xy y^2) + C = (i-1)z^2 + C$, where C is any constant.
- **5.** (a) False.
 - (b) False. Example: f is identically constant. The statement is true if f is nonconstant; try to prove that.
- 6. (a) $\frac{\pi}{4b^3}e^{-ab}(ab+1)$ (b) $4\pi i$ (c) $\int_{\gamma_1} \overline{z} \, dz = \pi i, \int_{\gamma_2} \overline{z} \, dz = -4i; f$ can't be analytic everywhere in the region between the two curves. (d) 0
 - $(\mathbf{u}) \mathbf{U}$
 - (e) $\pi i/2$
- 7. (a) 1 2i and -2 + i.
 - (b) $\ln 2 + i(-\pi/6 + 2n\pi)$, where n is an integer.
- 8. $(i^2)^i = e^{-(1+2n)\pi}$ and $(i)^{2i} = e^{-(1+4n)\pi}$, where *n* is an integer.
- **9.** 3
- **10.** 1