Complex Variables Practice Final

1. For each of the following, give an example of such a function, or explain why it's impossible.
(a) f is an analytic function on a domain D whose range is the set of all points (x, y) with $x \geq 0$.
(b) f is an analytic function and the maximum of $|f|$ on the set $|z| \leq 2$ is attained at $z=0$.
2. Prove or give a counterexample for each of the following statements.
(a) The product of two analytic functions is analytic.
(b) The real part of an analytic function is analytic.
3. Find a conformal mapping that sends the unit disk $\{z:|z|<1\}$ to the lower half-plane $\{z: \operatorname{Im}(z)<0\}$, or prove that no such mapping can exist.
4. Consider the function $f=u+i v$, where $u(x+i y)=x^{2}+2 x y+y^{2}$ and $v(x+i y)=x^{2}-2 x y-y^{2}$.
(a) Where does f^{\prime} exist? Where is f analytic?
(b) Does there exist an analytic function g whose real part is equal to u ? If so, give an example.
(c) Does there exist an analytic function h whose imaginary part is equal to v ? If so, give an example.
5. Prove or disprove:
(a) Let D_{1} and D_{2} be simply connected domains with nonempty intersection. Then $D_{1} \cup D_{2}$ is also simply connected.
(b) Let D be a domain and f be analytic on D. Then the image $f(D)$ is also a domain.
6. Evaluate the following integrals:
(a) $\int_{0}^{\infty} \frac{\cos (a x)}{\left(x^{2}+b^{2}\right)^{2}} d x$, where a and b are positive real numbers.
(b) $\int_{\gamma} e^{\frac{2}{z}} d z$, where γ is the unit circle oriented counterclockwise.
(c) $\int_{\gamma_{1}} \bar{z} d z$ and $\int_{\gamma_{2}} \bar{z} d z$, where γ_{1} is the semicircle in the upper half-plane going from -1 to 1 , and γ_{2} is the polygonal path from -1 to $-1+i$ to $1+i$ to 1 . What can you conclude about the function $f(z)=\bar{z}$?
(d) $\int_{\gamma} \frac{\sin z}{e^{z^{2}}} d z$, where γ is the unit circle oriented counterclockwise.
(e) $\int_{\gamma} \frac{e^{z}}{z(z+4)} d z$, where γ is the unit circle oriented counterclockwise.
7. Find all solutions to the following equations.
(a) $z^{2}+(1+i) z=-5 i$
(b) $e^{z}=\sqrt{3}-i$
8. Compute $\left(i^{2}\right)^{i}$ and $(i)^{2 i}$, and conclude that the identity $\left(z^{a}\right)^{b}=z^{a b}$ does not always hold for complex z, a, and b.
9. How many solutions does the equation $z^{5}+6 z^{2}+2 z+1=0$ have in the annulus $1 \leq r \leq 2$?
10. Let $f(z)=z^{4}-z$, and let γ be the circle of radius $1 / 2$, centered at the origin, oriented counterclockwise. How many times does the image $f(\gamma)$ wrap around the origin counterclockwise?

Answers:

1. (a) Impossible: the range must be an open set (Theorem 1, p. 191).
(b) f must be identically constant.
2. (a) True (product rule).
(b) False (one example: if $f(z)=z$, then the real part is $u(x+i y)=x$, which doesn't satisfy CauchyRiemann).
3. Many possibilities; one is $f(z)=\frac{i z+1}{2 z+2 i}$.
4. (a) f^{\prime} exists only at 0 , so f is nowhere analytic.
(b) No, because u is not harmonic.
(c) Yes, because v is harmonic. $h(x+i y)=\left(-x^{2}-2 x y+y^{2}\right)+i\left(x^{2}-2 x y-y^{2}\right)+C=(i-1) z^{2}+C$, where C is any constant.
5. (a) False.
(b) False. Example: f is identically constant. The statement is true if f is nonconstant; try to prove that.
6. (a) $\frac{\pi}{4 b^{3}}{ }^{-a b}(a b+1)$
(b) $4 \pi i$
(c) $\int_{\gamma_{1}} \bar{z} d z=\pi i, \int_{\gamma_{2}} \bar{z} d z=-4 i$; f can't be analytic everywhere in the region between the two curves.
(d) 0
(e) $\pi i / 2$
7. (a) $1-2 i$ and $-2+i$.
(b) $\ln 2+i(-\pi / 6+2 n \pi)$, where n is an integer.
8. $\left(i^{2}\right)^{i}=e^{-(1+2 n) \pi}$ and $(i)^{2 i}=e^{-(1+4 n) \pi}$, where n is an integer.
9. 3
10. 1
