Complex Variables Practice Midterm \#1

You will have three hours to complete the actual exam, starting when you open it up. You may not use books, notes, the internet, friends, etc. - nothing but a calculator and a pen or pencil. It's due at the beginning of class on Wednesday, February 18. It will of course be shorter than this.

1. Prove or give a counterexample: The union of two open sets is open.
2. Where is the function $f(x+i y)=x^{2}+i y^{2}$ differentiable?
3. Show that the function $u(x, y)=y^{2}-x^{2}$ is harmonic, find its harmonic conjugate, and find an analytic function $f(z)$ whose real part is u.
4. Use the definition of the derivative to show that every real-valued entire function is constant.
5. Let γ be the arc of the circle $|z|=2$ from $z_{1}=2$ to $z_{2}=2 i$ that lies in the first quadrant. Show that $\left|\int_{\gamma} \frac{z+4}{z^{3}-1} d z\right| \leq \frac{6 \pi}{7}$.
6. (a) To what region does the function $f(z)=e^{z}$ map the unit square with corners $0,1,1+i$, and i ?
(b) Solve the equation $e^{z}=-1-\sqrt{3} i$
7. Compute the following integrals.
(a) $\int_{\gamma} \frac{1}{z} d z$, where γ is the circle $|z|=3$, oriented counterclockwise. (For practice, try doing this directly and using a clever theorem.)
(b) $\int_{\gamma} \cos (\sin z) d z$, where γ is the parallelogram with corners $2+i, 5+2 i, 6+3 i$, and $3+2 i$, oriented counterclockwise.
(c) $\int_{\gamma}\left(z^{3}+1\right) d z$, where γ is the line segment from $z_{1}=0$ to $z_{2}=1+i$.

Answers:

1. See the solution to problem 1.3.13a from the textbook.
2. The partials are continuous everywhere, so it's differentiable exactly when it satisfies Cauchy-Riemann. $\partial f / \partial x=2 x$ and $\partial f / \partial y=2 i y$, so f is differentiable iff $2 x=-i 2 i y$ iff $x=y$.
3. $u_{x x}+u_{y y}=-2+2=0$, so it's harmonic. The harmonic conjugate is $v(x, y)=-2 x y+c$, so $f(z)=$ $u+i v=y^{2}-x^{2}-i(2 x y)+C=-z^{2}$.
4. $f=u+i \cdot 0$. Since f is differentiable, $f^{\prime}(z)=$ the limit from the right $=\partial u / \partial x$, and $f^{\prime}(z)=$ the limit from above $=\frac{1}{i} \partial u / \partial y$. A real number and an imaginary number can be equal only if they're both 0 , so $\partial u / \partial x=\partial u / \partial y=0$ everywhere, so u is constant. Since $f=u+0, f$ is constant as well.
5. Use the fact that $\left|\int_{\gamma} f\right| \leq C$.(length of γ), if C is an upper bound for f on γ. Here, $|z+4| \leq|z|+4=6$, $\left|z^{3}-1\right| \geq\left||z|^{3}-1\right|=7$, and length $(\gamma)=\pi$.
6. (a) The annular region given in polar coordinates by $e^{0}=1 \leq r \leq e^{1}=e$ and $0 \leq \theta \leq 1$.
(b) $-1-\sqrt{3} i=2 e^{i\left(-\frac{2}{3} \pi \pm 2 \pi n\right)}$, so $z=\ln 2+i\left(-\frac{2}{3} \pi \pm 2 \pi n\right)$.
7. (a) $2 \pi i$ (directly, or using the Cauchy integral formula)
(b) 0 (Cauchy-Goursat)
(c) i (Fundamental Theorem of Calculus)
