You will have three hours to complete the actual exam, starting when you open it up. You may not use books, notes, the internet, friends, etc. – nothing but a calculator and a pen or pencil. It’s due at the beginning of class on Wednesday, April 1.

1. For each of the following, give an example of such a function, or explain why it’s impossible.
 (a) \(f \) is differentiable everywhere, but \(f''(0) \) does not exist.
 (b) \(f \) is differentiable everywhere except at 0.
 (c) \(f \) is differentiable everywhere except at 0, but has neither a pole nor a removable singularity at 0.

2. Find the Laurent series for the function \(f(z) = z^2 \sin(\frac{1}{z}) \) centered at the origin. Where is the series equal to the function?

3. Compute the following integrals.
 (a) \(\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 9)(x^2 + 4)^2} \, dx \)
 (b) \(\int_{0}^{\infty} \frac{\sin x}{x} \, dx \)

4. Let \(u(x, y) \) be a harmonic function on a domain \(D \). Show that \(u \) has no local maxima or minima on \(D \).

5. Determine how many zeros (counting multiplicities) the function \(f(z) = z^7 - 4z^3 + z - 1 \) has inside the unit circle.

6. Prove that an entire function whose imaginary part is bounded must be constant.

7. Determine the number of zeros (counting multiplicities) of \(f(z) = z^3 - z^2 + 2 \) in the first quadrant.

Answers:
1. (a) Impossible: the derivative of an analytic function is analytic.
 (b) One possibility: \(1/z \).
 (c) It must have an essential singularity at 0. One possibility: \(e^{1/z} \).

2. \(1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n + 1)!} \cdot \frac{1}{z^{4n}} \), equal to \(f \) on \(0 < |z| < \infty \).

3. (a) \(\pi/100 \)
 (b) \(\pi/2 \)

4. Recall that a harmonic function is the real part of the analytic function \(f = u + iv \) (where \(v \) is a harmonic conjugate of \(f \); see p. 81). Then apply the discussion on p. 192.

5. 3.
6. Hint: apply Liouville’s theorem to the function \(e^{if} \).
7. 1.