1. (a) Show that the following system of equations is inconsistent:
\[
\begin{align*}
x & - 6y = -1 \\
x & - 2y = 2 \\
x + y & = 1 \\
z + 7y & = 6
\end{align*}
\]
(b) Find the least squares solution for the above equation.
(c) Find the least-squares error associated to the solution you found above.

2. The following rule gives an inner product on \(M_2 \), the set of all \(2 \times 2 \) matrices:
\[
\left\langle \begin{bmatrix} a_{11} & a_{12} \\
a_{21} & a_{22} \end{bmatrix}, \begin{bmatrix} b_{11} & b_{12} \\
b_{21} & b_{22} \end{bmatrix} \right\rangle = 2a_{11}b_{11} + (a_{11} + a_{12})(b_{11} + b_{12}) + (a_{11} + a_{21})(b_{11} + b_{21}) + a_{22}b_{22}.
\]
(a) Show that \(\left\{ \begin{bmatrix} 1 & 0 \\
0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\
0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\
0 & 1 \end{bmatrix} \right\} \) is a linearly independent set from \(M_2 \).
(b) Let \(W = \text{Span} \left\{ \begin{bmatrix} 1 & 0 \\
0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\
0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\
0 & 1 \end{bmatrix} \right\} \). Find an orthogonal basis for \(W \), using the above inner product.
(c) Find the projection of \(\begin{bmatrix} 1 & 8 \\
12 & 2 \end{bmatrix} \) onto \(W \).
(d) Find a nontrivial matrix in \(W^\perp \).

3. Let \(T : \mathcal{P}_2 \to \mathcal{P}_3 \) be defined as integration, with constant of integration zero. For example, \(T(1 + t + t^2) = t + \frac{t^2}{2} + \frac{t^3}{3} \).
(a) Show this is a linear transformation.
(b) Find the matrix representation of \(T \) relative to the standard bases for \(\mathcal{P}_2 \) and \(\mathcal{P}_3 \).
(c) Give an example of how this matrix relates to the transformation \(T \).

4. (a) Let \(A \) be a \(12 \times 12 \) matrix. You are interested in showing that \(\bar{A} \bar{x} = \bar{b} \) has a solution for every \(\bar{b} \) in \(\mathbb{R}^{12} \). This is equivalent to which of the following?
Write the appropriate numbers here:

(i) \(\det A = 0 \).
(ii) the transformation \(\bar{x} \to A\bar{x} \) is one-to-one.
(iii) \(\text{Nul} \ A = \{ \bar{0} \} \).
(iv) \(A \) is diagonalizable.
(v) \(\text{rank} \ A = 12 \).
(vi) \(A = A^T \).
(vii) the columns of \(A \) span \(\mathbb{R}^{12} \).
(viii) \(A \) is invertible.
(b) Suppose \(\{\vec{u}_1, \ldots, \vec{u}_m\} \) is an orthonormal list of vectors in vector space \(V \). Prove that if \(\vec{v} \in \text{Span} \{\vec{u}_1, \ldots, \vec{u}_m\} \) then
\[
||\vec{v}||^2 = |<\vec{v}, \vec{u}_1>|^2 + \cdots + |<\vec{v}, \vec{u}_m>|^2.
\]

5. Let \(W = \text{Span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \right\} \).

(a) Show that \(A = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \\ \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \right\} \) is a basis for \(W \).

(b) Show that \(B = \left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 7 \\ 3 \end{bmatrix} \right\} \) is another basis for \(W \).

(c) Find the change of basis matrix from \(A \) to \(B \), i.e. \(P_{B\leftarrow A} \).

(d) Find the coordinate vector of \(\begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix} \) in both bases, and use your answer from the last question to relate them.

6. (a) Find the eigenvalues of \(A = \begin{bmatrix} 4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5 \end{bmatrix} \), and find the eigenspace associated to each eigenvalue.

(b) Is matrix \(A \) diagonalizable?

(c) Let \(B \) be an arbitrary square matrix. If \(B \) is diagonalizable, what does this diagonal matrix represent?

(d) Prove that if a matrix \(B \) is invertible then 0 is not an eigenvalue of \(B \).

7. (a) Find the inverse to \(\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 3 & 8 \end{bmatrix} \) and use it to solve
\[
\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 3 & 8 \end{bmatrix} \vec{x} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}.
\]

(b) Find the determinant of \(\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 0 & 3 & 8 \end{bmatrix} \).

(c) Prove that the inverse of \(AB \) is \(B^{-1}A^{-1} \).