1. (10 points) Find an equation for the tangent line to the curve $y = 3(x+1)^2$ at the point (-2, 3).

Slope =
$$\frac{dy}{dx}\Big|_{x=-\lambda}$$
 $\frac{dy}{dx} = 3 \cdot \lambda(x+1) = 6x+6$, so $\frac{dy}{dx}\Big|_{x=-\lambda} = -1\lambda+6 = -6$
line: $y - y_0 = -6(x - x_0)$ $(x_0, y_0) = (-\lambda, y_0)$, so $y - (3) = -6(x - (-\lambda))$
 $y - 3 = -6x - 1\lambda$
 $y = -6x - 9$

2. (10 points) Newton's law of gravitation states that the gravitational force F between two bodies of mass m_1 and m_2 , respectively, is given by the equation $F(r) = G \frac{m_1 m_2}{r^2}$, where r is the distance between the centers of mass of the bodies and G is the gravitational constant. Compute $\frac{dF}{dr}$, and explain the physical significance of the sign of the derivative.

- 3. (12 points) Let $f(x) = e^{2x}$.
 - a) Is f(x) increasing or decreasing at x=1? How do you know?

b) Is f'(x) increasing or decreasing at x=1? How do you know?

$$f''(x) = (f'(x))' = (de^{dx})' = 4e^{dx}$$
, so $f''(i) = 4e^{d} > 0$, so $f'(x)$
is increasing af $x = 1$.

c) Let *n* be a positive integer (e.g., 1, 2, or 3). What is $\frac{d^n f}{dx^n}$?

$$f'(x) = \lambda e^{\lambda x}, \quad f''(x) = \lambda - \lambda e^{\lambda x} = \lambda^{2} e^{\lambda x}, \quad f'''(x) = \lambda - \lambda^{2} e^{\lambda x} = \lambda^{3} e^{\lambda x}, \quad - - \frac{\partial^{2} f}{\partial x^{n}} = \lambda^{n} e^{\lambda x}$$

4. (12 points) USE THE DEFINITION OF DERIVATIVE to compute the derivative of the function $f(x) = x^2$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^3 + dxh + h^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{dxh + h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(dx+h)}{h}$$

$$= \lim_{h \to 0} dx + h \quad (since h \neq 0)$$

$$= dx$$

5. (12 points) Compute the derivatives of the following functions.

a)
$$f(x) = \frac{\sin x}{x+1} \frac{u}{v} \frac{vu' - uv'}{v^{3}} = \frac{(x+1)\cos x - \sin x \cdot l}{(x+1)^{3}}$$
$$= \frac{(x+1)\cos x - \sin x}{(x+1)^{3}}$$

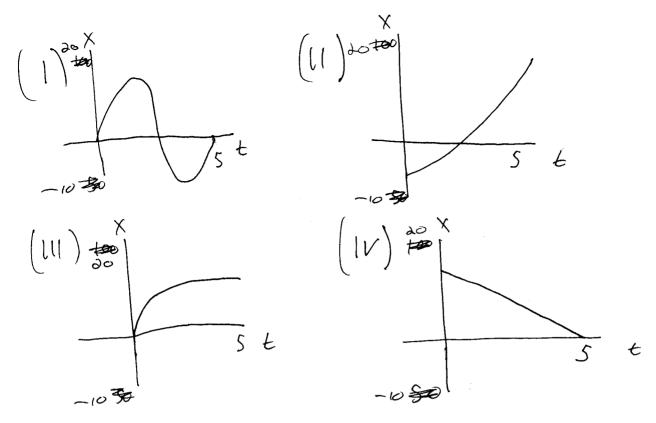
b)
$$f(x) = (3x^{21} - x^{-7.2})$$
 $(3x^{21} - x^{-7.2})$ $(3x^{21} + 3x^{21} + 3x^{21})$ $(3x^{21} + 3x^{$

d)
$$f(x) = x^{x}$$

$$\left(\chi^{x} \right)' = \left(e^{\ln x} \right)^{x} \right)' = \left(e^{x \ln x} \right)' = e^{x \ln x} \cdot \left(\chi \ln x \right)'$$

$$= e^{x \ln x} \cdot \left(\chi \cdot \frac{1}{x} + 1 \cdot \ln x \right)$$

$$= e^{x \ln x} \cdot \left(1 + \ln x \right)$$



6. (12 points) Each of the graphs above shows the position of a particle moving along the x-axis as a function of time, $0 \le t \le 5$. The vertical scales of the graphs are the same. <<< During this time interval, which particle has

- a) Constant velocity? | V constant slope
- b) The greatest initial velocity? 111 biggest slope at t=0
- c) The greatest average velocity? 11 Siggest change in x from t=0 to t=5
- d) Zero average velocity? I no change in x between t=0 & t=5
- e) Zero acceleration? IV Same as constant velocity
- f) Positive acceleration throughout? | 5 lope is increasing throughout

- 7. (10 points) For each of the following statements, explain whether it's true or false. If it's false, give an example showing that it's false.
 - a) If $f'(x_0) = 0$, then $f''(x_0) = 0$ as well.

False. Take
$$f(x)=x^2$$
, $\chi_0=0$. Then $f'(\chi_0)=\lambda\chi_0=0$, but $f''(\chi_0)=\lambda\neq 0$.

b) If f and g are differentiable at x_0 , then $\frac{f}{g}$ is differentiable at x_0 as well.

False - we also need $g(x_0) \neq 0$. For example, take f(x) = x, $g(x) = x^d$, and $x_0 = 0$. Then $f \notin g$ are differentiable at $x_0 = 0$, but $\frac{f}{g}(x) = \frac{X}{X^d} = \frac{1}{X}$ is not even defined, much less differentiable, at $x_0 = 0$.

c) If f is differentiable, then it's continuous.

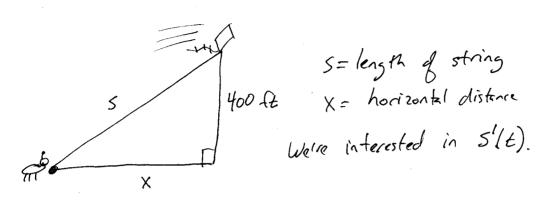
True.

- d) If f'(x) = g'(x) for every x, then f(x) = g(x) for every x.

 False. Take $f(x) = \chi$ and $g(\chi) = \chi + 1$. Then $f'(\chi) = g'(\chi) = 1$, but clearly $f(\chi) \neq g(\chi)$.
- e) If f(x) = g(x) for every x, then f'(x) = g'(x) for every x.

True.

8. (12 points) Uncle Ant is flying a kite. The kite is at a constant altitude of 400 feet, being blown away from Uncle Ant horizontally at a constant speed. If it's directly over his head at 9:00 am, and it's moved 800 feet horizontally by 1:00 pm, how fast is the string being payed out at the time when 500 feet of string is already out? (Assume that the string is perfectly taut, so that it forms a straight line, and that Uncle Ant's height is 0.)



We have
$$x^3 + (400)^3 = 5^3$$
, so $dx x' = d55'$.

At the time we're interested in, $5 = 500$, so we have

 $x^3 + 160000 = 250000$, or $x = 300$.

What's x'? Well, it's a constant. x=0 at 9:00 am, and 4 hrs later x=800, so $x'=\frac{800-0}{4}=200$.

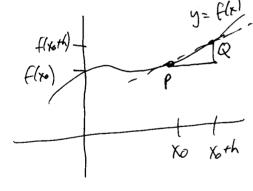
So:
$$\lambda \times x' = \lambda s s'$$

 $\lambda \cdot 300 - \lambda 00 = \lambda \cdot 500 - s'$
 $\lambda \cdot 120 = s'$

- **9.** (10 points) DO ONLY ONE of the following problems. I will grade only one of them, so if you try both, be sure to tell me which one you want graded.
 - a) Prove the quotient rule. (You may use any other rules that we've learned.)
 - b) State the definition of the derivative of the function f(x) at the point x_0 . Using a picture, explain (in words) why the slope of the tangent line to the graph y=f(x) at the point x_0 is given by that definition. Be sure to label your picture well.

a)
$$\left(\frac{f}{g}\right)' = \left(f \cdot \frac{f}{g}\right)' = f' \cdot \frac{f}{g} + f \cdot \left(\frac{f}{g}\right)'$$

$$= f' + f \cdot \frac{-1}{g^{2}} \cdot g' = f' - \frac{fg'}{g^{2}} = \frac{f'g - fg'}{g^{2}}$$



y=flx)

The derivative at xo is equal to the slope of

the tangent line to the graph y = f(x) at

the point P. The tangent line is the limit

the point P. The tangent line is the limit

the secant lines joining P & Q as Q gets

Xo Xoth closer & closer to P, i.e., as h goes to

D. Thus the slope of the tangent line is equal

to the limit of the slopes of the secant lines

as h -> 0, that is,

f'(xo) = lim f(xoth) -f(xo)

h -> 0