Math 5 Calculus Wiseman 9/4/02 Limits Worksheet

(1) Let $f(x) = x^2 + 3$. We think that $\lim_{x \to 0} f(x) = 3$, and we want to prove it from the definition. Here's how: If I give you any positive number ϵ , you have to be able to find a positive number δ which is small enough that if x is within δ of 0, then $f(x) = x^2 + 3$ is within ϵ of 3. Find such a δ . (Your answer will involve ϵ .)

Xt is new negative, so
$$-E \subset X^{d}$$
 automatically.
So I need to solve $X^{d} \subset E$, or $-E \subset X \subset U \subseteq I$.
In other words, I need X to be within $U = U \subseteq I$ of $U \subseteq I$.

(2) For the function f whose graph is given, state the value of the given quantity, or say that it dòes not exist.

f)
$$\lim_{x \to 1} f(x)$$

g)
$$\lim_{x \to -2+} f(x)$$

h)
$$\lim_{x \to -2} f(x)$$

i)
$$f(-1)$$

d) $\lim_{x \to 3} f(x)$ i) f(-2)

e) f(3)

) Find $\lim_{h\to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$. HINT: Multiply top and bottom by $\sqrt{x+h}+\sqrt{x}$ (the conjugate

of the numerator

 $\lim_{h\to 0} \frac{\sqrt{xth} - \sqrt{x}}{h} = \lim_{h\to 0} \frac{\sqrt{xth} - \sqrt{x}}{h} \cdot \frac{\sqrt{xth} + \sqrt{x}}{\sqrt{xth} + \sqrt{x}}$

 $=\lim_{h\to 0} \frac{\chi + h - \chi}{h(\sqrt{\chi + h} + \sqrt{\chi})} = \lim_{h\to 0} \frac{h}{h(\sqrt{\chi + h} + \sqrt{\chi})}$

 $=\lim_{h\to 0}\frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{\sqrt{x}}$

A patient receives a 150mg injection of a drug every 4 hours. The graph below shows the amount f(t) of the drug in the bloodstream after t hours. Find $\lim_{t\to 12^-} f(t)$ and $\lim_{t\to 12^+} f(t)$, and explain the significance of these one-sided limits. (That is, what do these limits say about the amount of the drug in the patient's bloodstream?)

lim f(e) = 150, lim f(e) = 300 6-716 Right before the 12-hr. injection, The concentration has dropped down to 150. Kight after ne injection, it jumps up to 300.