Math 5 Calculus Wiseman 9/27/02
Trig Functions and Chain Rule Worksheet

(1) Calculate the derivatives of the following functions: sine®, cot 6, secé, tan?z, tan z2
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(2) Uncle Ant is shining a laser beam on a wall. If the wall is 10 meters away, and the angle
¢ that the beam makes with the ground is increasing at a rate of 0.2 radians/second, how
fast is the height y of the spot on the wall increasing?
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(3) (a) The number B of grams of bacteria living on the leftover @ggplant in my fridge after

t days is given by the function B(t) = 1000e%!*. How fast is the amount of bacteria
growing after ten days? ( oy
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(b) The tastiness T of the eggplant is a function of the number of bacteria living on it:
T =1/B. How fast is the tastiness decreasing after ten days? What are the units?
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(4) A cubical block of ice with edges 20 in. long begins to melt at 8 am. Each edge decreases
at a constant rate thereafter and each is 8 in. long at 4 pm. What was the rate of change
of the block’s volume at noon? (Is this problem realistic physically?)
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