1. Let \(F(x) = x^2 + x \). Find and classify the fixed points. What are the possible long-term behaviors of points under \(F \)?

2. Find and classify the fixed points of the following functions.
 (a) \(F(x) = \frac{1}{x^2} \).
 (b) \(F(x) = 1 - x^2 \).
 (c) \(F(x) = x^2 - 1 \).

3. (a) Let \(F(x) = -x^3 \). Find and classify the fixed points, the period-two points, and the period-three points.
 (b) Same question, with \(F(x) = \frac{1}{2}x + \frac{1}{2} \).

4. Let \(f(x) = \sqrt{x} \). What are the roots? What happens if you use Newton’s method with initial guess \(x_0 = 1 \)?

5. Is it possible for a discrete dynamical system \(F \) to have exactly three points of (least) period two?

6. (a) Let \(G(x) = \sin x \). Clearly 0 is a fixed point for \(G \). Is it attracting, repelling, or neither?
 (b) For what values of the parameter \(c \) will the point 0 be an attracting fixed point for the function \(G_c(x) = c \sin x \)?

7. Let \(G : [0, 1] \to [0, 1] \) be the doubling map defined by
 \[
 G(x) = \begin{cases}
 2x & \text{if } 0 \leq x < 1/2, \\
 2x - 1 & \text{if } 1/2 \leq x \leq 1.
 \end{cases}
 \]
 (a) Draw the graphs of \(G \), \(G^2 \), and \(G^k \).
 (b) Find and classify the fixed points and period-two points of \(G \).
 (c) What is the orbit of the point \(1/10 \)?
 (d) (HARDER) Show that \(x \) is eventually periodic or eventually fixed if and only if \(x \) is rational (i.e., \(x = p/q \), where \(p \) and \(q \) are integers).
 (e) ASIDE: \(G \) is clearly not continuous as a function from the interval \([0, 1]\) to itself. However, if we glue together the points 0 and 1, we get a circle, and \(G \) is continuous as a function from this circle to itself. This is the same thing as saying that \(G(x) = 2x \mod 1 \) (i.e., \(G(x) \) is the fractional part of \(2x \)), if that means anything to you. Anyway, you don’t need to know any of this for your exam.