1. Let \(F(x) = x^2 + 1 \). Compute the first five points on the orbit of 0.

2. Let \(G(x) = x^2 - 2 \). Compute \(G^2(x) \) and \(G^3(x) \).

3. Let \(H(x) = |x| \). Compute \(H^2(x) \) and \(H^3(x) \). What are the eventually fixed points for \(H \)?

4. Find all real fixed points (if any) of the following functions:
 (a) \(F(x) = 3x + 2 \)
 (b) \(F(x) = x^2 + 1 \)
 (c) \(F(x) = |x| \)
 (d) \(F(x) = x \sin x \)

5. Let \(F(x) = 1 - x^2 \). Show that 0 is a period-2 point for \(F \).

6. Consider the function \(G(x) = |x - 2| \).
 (a) What are the fixed points of \(G \)?
 (b) If \(m \) is an odd integer, what can you say about the orbit of \(m \)?
 (c) If \(m \) is an even integer, what can you say about the orbit of \(m \)?

7. Consider the tent map \(T : [0, 1] \to [0, 1] \), defined by
 \[
 T(x) = \begin{cases}
 2x & \text{if } 0 \leq x \leq 1/2 \\
 2 - 2x & \text{if } 1/2 \leq x \leq 1.
 \end{cases}
 \]

 \[\text{Figure 1. The tent map.}\]

 (a) Find a formula for \(T^2 \), and sketch its graph.
 (b) Find all fixed points for \(T \) and \(T^2 \).
 (c) Find a formula for \(T^3 \), and sketch its graph.
 (d) What does the graph of \(T^n \) look like?