1. (a) Show that \(\langle (a, b), (c, d) \rangle = ac + \frac{1}{2}(ad + bc) + bd \) is an inner product on \(\mathbb{R}^2 \).

(b) Show that \(B = \{ x_1 = (1, 0), x_2 = (1, -2) \} \) is an orthogonal basis for \(\mathbb{R}^2 \) with this inner product.

(c) Use this inner product to find the coordinates of the vector \((2, 2) \) with respect to the basis \(B \). (You can probably do it just by looking at it, but humor me and use the inner product.)

2. Let \(\mathbb{P}_2 \) be the vector space of all real polynomials of degree less than or equal to two. For \(p \) and \(q \) in \(\mathbb{P}_2 \), define

\[\langle p, q \rangle := p(0)q(0) + p(1)q(1) + p(5)q(5). \]

Show that this defines an inner product on \(\mathbb{P}_2 \). What is the “length” of the polynomial \(2x^2 + x \) with this inner product?