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Abstract. For continuous maps of compact metric spaces f : X → X and
g : Y → Y and for various notions of topological recurrence, we study the
relationship between recurrence for f and g and recurrence for the product
map f × g : X × Y → X × Y . For the generalized recurrent set GR, we see
that GR(f × g) = GR(f)×GR(g). For the nonwandering set NW, we see that
NW(f × g) ⊂ NW(f)×NW(g) and give necessary and sufficient conditions on
f for equality for every g. We also consider product recurrence for the chain
recurrent set, the strong chain recurrent set, and the Mañé set.

1. Introduction

Let f : X → X and g : Y → Y be continuous maps of compact metric spaces.
We are interested in the relationship between recurrence for f and g and recurrence
for the product map f × g : X × Y → X × Y , and in how that relationship varies
depending on which notion of recurrence we consider.

The strongest notion of recurrence is periodicity. It is clear that Per(f × g),
the set of periodic points for f × g, is equal to Per(f)× Per(g). A slightly weaker
condition is that a point is (positively) recurrent if it is in its own ω-limit set. The
question of whether the positive recurrent set of a given product is equal to the
product of the positive recurrent sets has been well studied and has led to some
very deep and interesting mathematics; see [2] and [13] and the references therein.
In this paper, we consider the corresponding question for several less restrictive
notions of recurrent set, most importantly the generalized recurrent set and the
nonwandering set.

The interesting dynamics occurs on the nonwandering set, so in order to under-
stand the relationship between the dynamics of a product map and the dynamics
of the original maps, we need to understand the nonwandering set; we give nec-
essary and sufficient conditions (Theorem 3.12) for a point x ∈ X to be product
nonwandering, that is, for (x, y) to be nonwandering for f × g for any g and any
nonwandering point y ∈ Y . Auslander’s generalized recurrent set GR(f) (defined
originally for flows (see [4]), and extended to maps (see [1,3])) is a larger and in many
ways more dynamically natural set, particularly for understanding Lyapunov func-
tions; see [8] and the references in [15]. We show that GR(f × g) = GR(f)×GR(g)
(Theorem 3.1). The same is clearly true for the chain recurrent set, which reflects
a still broader notion of recurrence.
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We also consider product recurrence for Easton’s strong chain recurrent set and
Fathi and Pageault’s Mañé set. These results come up for the most part in the
study of the generalized recurrent set, but are also of independent interest.

In section 2, we give definitions and background information for the various
notions of recurrence and for metrics on the product space. In section 3, we state
and prove our results.

I am grateful to the referee for useful suggestions to improve and clarify this
work.

2. Definitions and background

Throughout the paper, let f : X → X and g : Y → Y be continuous maps of
compact metrizable spaces; unless stated otherwise, we will use the metrics dX and
dY respectively. Let Bd(x; ε) be the closed ε-ball around x, Bd(x; ε) = {x′ ∈ X :
d(x, x′) ≤ ε}.

2.1. Recurrent sets.

Definition 2.1. A point x ∈ X is nonwandering for f if for any neighborhood U
of X , there exists an n > 0 such that fn(U)∩U 6= ∅. We denote by NW(f) the set
of nonwandering points.

Definition 2.2. An (ε, f, dX)-chain (or (ε, dX)-chain, if it is clear what the map
is, or ε-chain, if the metric is also clear) of length n from x to x′ is a sequence
(x = x0, x1, . . . , xn = x′) such that dX(f(xi−1), xi) ≤ ε for i = 1, . . . , n. A point x
is chain recurrent if for every ε > 0, there is an ε-chain from x to itself. We denote
by CR(f) the set of chain recurrent points. (Chain recurrence is independent of
the choice of metric; see, for example, [9].)

The following definition is due to Easton [7].

Definition 2.3. A strong (ε, f, dX)-chain (or strong (ε, dX)-chain or strong ε-
chain) from x to x′ is a sequence (x = x0, x1, . . . , xn = x′) such that the sum of the
errors is bounded by ε, that is,

∑n
i=1 dX(f(xi−1), xi) ≤ ε. A point x is dX-strong

chain recurrent (or strong chain recurrent) if for every ε > 0, there is a strong
(ε, dX)-chain from x to itself. We denote the set of strong chain recurrent points
by SCRdX

(f).

We write x1 ∼dX
x2 if for any ε > 0 there is a strong (ε, f, dX)-chain from x1 to

x2 and one from x2 to x1; then ∼dX
is a closed equivalence relation on SCRdX

(f),
and each equivalence class is a closed invariant set.

The strong chain recurrent set does depend on the choice of metric; see, for
example, [16]. (Note, however, that it does not change if the new metric is bi-
Lipschitz equivalent to the original [16, Prop. 3.2].) One way to eliminate this
dependence is to take the intersection over all possible choices. This leads to the
following definition.

Definition 2.4 ([8]). The generalized recurrent set GR(f) is
⋂

d′

X
SCRd′

X
(f), where

the intersection is over all metrics d′X compatible with the topology of X .

There are other, equivalent definitions of the generalized recurrent set; see [1, 3,
4,8,15]. In particular, GR(f) was originally defined as the set of points x ∈ X such
that all Lyapunov functions are constant on the orbit of x [1, 3, 4]; see section 3.
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Another way to eliminate the dependence of the strong chain recurrent set on
the choice of metric is to take the union over all possible choices.

Definition 2.5 ([8]). The Mañé set M(f) is
⋃

d′

X
SCRd′

X
(f), where the union is

over all metrics d′X compatible with the topology of X .

We will need an equivalent definition of the Mañé set. We begin with some
notation. Let ∆X be the diagonal in X × X , ∆X = {(x, x) : x ∈ X}. Let
VdX

(ε) (or V(ε)) be the closed ε-neighborhood of the diagonal ∆X in X × X ,
VdX

(ε) = {(x1, x2) : dX(x1, x2) ≤ ε}.
For N ⊂ X × X , we denote by Nn the n-fold composition of N with itself,

N ◦ N · · · ◦ N , that is,

Nn ={(x, x′) : there exists z0 = x, z1, . . . , zn = x′ ∈ X

such that (zi−1, zi) ∈ N for i = 1, . . . , n}.

Definition 2.6. Let N be a neighborhood of ∆X . An (N , f)-chain (or simply N -
chain if the map is clear) from x to x′ is a sequence of points (x = x0, x1, . . . , xn =
x′) in X such that (f(xi−1), xi) ∈ N for i = 1, . . . , n.

Thus (x, x′) ∈ Nn exactly when there is an (N , Id)-chain of length n from x to
x′, where Id is the identity map.

Theorem 2.7 ([15, Theorem 3.3]). A point x is in M(f) if and only if for any
closed neighborhood D of the diagonal in X × X, there exist a closed symmetric
neighborhood N of the diagonal and an integer n > 0 such that N 3n ⊂ D and there
is an (N , f)-chain of length n from x to itself.

Any nonwandering point is clearly strong chain recurrent for any metric dX ,
and any strong ε-chain is clearly an ε-chain, so we have the inclusions NW(f) ⊂
GR(f) ⊂ SCRdX

(f) ⊂ M(f) ⊂ CR(f).

2.2. Metrics on the product space. Given two metrizable spaces X and Y , we
give the product space X × Y the product topology. We will need to be able to go
from metrics on X and Y to a metric on X × Y , and vice versa. There are many
well-known ways of doing the former, all essentially equivalent; for convenience, we
use the following definition.

Definition 2.8. Let dX and dY be metrics on X and Y , respectively. Denote by
DdX,dY

the metric on X × Y given by DdX ,dY
((x1, y1), (x2, y2)) = dX(x1, x2) +

dY (y1, y2), and observe that DdX,dY
induces the product topology on X × Y .

Note that since the metrics max(dX , dY ) and DdX ,dY
are bi-Lipschitz equivalent,

they yield the same strong chain recurrent set for f × g, so we could just as well
have used max(dX , dY ) (or in fact ||dX , dY || for any norm || · || on R2).

Definition 2.9. Let D be a metric on X × Y . Define a metric DX on X by
DX(x1, x2) = maxy∈Y D((x1, y), (x2, y)) and a metric DY on Y by DY (y1, y2) =
maxx∈X D((x, y1), (x, y2)).

Lemma 2.10. DX is a metric on X, and if D is compatible with the product
topology on X×Y , then DX is compatible with the topology on X. The correspond-
ing statements hold for DY . Furthermore, D((x1, y1), (x2, y2)) ≤ DX(x1, x2) +
DY (y1, y2) for all x1, x2 ∈ X and y1, y2 ∈ Y .
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Proof. Define i : X → C(Y,X ×Y ) by i(x)(y) = (x, y), where C(X,Y ) is the space
of continuous functions from Y toX×Y . This is injective and continuous (any open
set in X×Y containing {x0}×Y contains U×Y for some open set U containing x0,
since Y is compact). Observe that DX is the pullback of the sup metric on C(X,Y ).
Fixing a y0 ∈ Y and composing the evaluation map evaly0

: C(Y,X × Y ) → X × Y
with projection onto X gives an inverse function for i, so the pullback is compatible
with the topology on X .

Finally, we have that

D((x1, y1), (x2, y2)) ≤ D((x1, y1), (x2, y1)) +D((x2, y1), (x2, y2))

≤ DX(x1, x2) +DY (y1, y2).

�

3. Recurrence for product maps

Our main result concerns the relationships, for the various notions of recurrent
set, between those of f and g and that of the product map f × g. The result
for the chain recurrent set is easy, and the proof is included for completeness and
to highlight the difference between ε-chains and strong ε-chains. The result for
the nonwandering set is a consequence of examples in the literature (see below),
although I have not been able to find an explicit statement elsewhere.

Theorem 3.1. Let f : X → X and g : Y → Y be continuous maps of compact
metrizable spaces. Let dX and dY be compatible metrics on X and Y , respectively,
and let D be a metric on X × Y compatible with the product topology. Then

(1) NW(f × g) ⊂ NW(f)×NW(g), and the inclusion can be strict.
(2) GR(f × g) = GR(f)×GR(g).
(3) M(f × g) ⊃ M(f)×M(g), and the inclusion can be strict.
(4) SCRDdX,dY

(f × g) = SCRdX
(f)× SCRdY

(g).

(5) SCRD(f × g) ⊃ SCRDX
(f)× SCRDY

(g), and the inclusion can be strict.

(6) CR(f × g) = CR(f)× CR(g).

We will prove the results in the order (1), (6), (4), (5), (2), and then, after some
preliminary work, complete the proof of (3).

Proof of Theorem 3.1(1). It is easy to see that NW(f ×g) ⊂ NW(f)×NW(g). Let
(x, y) be a nonwandering point for f × g, and let U be any neighborhood of x in
X and V any neighborhood of y in Y . Then U × V is a neighborhood of (x, y) in
X × Y , and so (f × g)n(U × V ) ∩ U × V 6= ∅ for some n > 0; thus fn(U) ∩ U 6= ∅
and gn(V ) ∩ V 6= ∅. So x is in NW(f) and y is in NW(g).

Next we show that the inclusion can be strict. Sawada [14] and Coven and
Nitecki [5] give examples of continuous maps f of compact metric spaces such that
NW(f2) is strictly contained in NW(f). Let f be such a map, and let x be a point
in NW(f)\NW(f2). Since x /∈ NW(f2), there exists a neighborhood U of x such
that f2m(U)∩U = ∅ for all m > 0. Define g : {0, 1} → {0, 1} by g(0) = 1, g(1) = 0.
Then U × {0} is a neighborhood of (x, 0), but (f × g)n(U ×{0})∩U × {0} = ∅ for
all n ≥ 1, since gn(0) = 1 if n is odd and fn(U)∩U = ∅ if n is even. Thus (x, 0) is
not in NW(f × g), even though x ∈ NW(f) and clearly 0 ∈ NW(g).

(Note that for any k > 0, Proposition 3.13 gives examples such that NW(fk) is
strictly contained in NW(f). There are also functions constructed in [12] that can
be adapted to give an example for which NW(f × g) ( NW(f)×NW(g).)
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�

Proof of Theorem 3.1(6). Recall that chain recurrence is independent of the choice
of metric. If ((x0, y0), (x1, y1), . . . , (xm, ym)) is an (ε, f × g,DdX,dY

)-chain, then
(x0, . . . , xm) is an (ε, f, dX)-chain and (y0, . . . , ym) is an (ε, g, dY )-chain; thus CR(f×
g) ⊂ CR(f)×CR(g). Now let (x0, . . . , xm) be an (ε/2, f, dX)-chain and (y0, . . . , yn)
an (ε/2, g, dY )-chain. Ifm 6= n, we can concatenate the first chain with itself n times
and the second with itself m times to get ε/2-chains of equal lengths, so we may
assume that m = n. Then ((x0, y0), (x1, y1), . . . , (xm, ym)) is an (ε, f × g,DdX,dY

)-
chain. �

The key observation in the preceding proof is that the concatenation of an ε-
chain from p to q with an ε-chain from q to r gives an ε-chain from p to r, and,
more generally, the concatenation of an arbitrary number of such ε-chains gives
an ε-chain. This is not true for strong ε-chains: Concatenating N strong ε-chains
gives an (Nε)-chain, so in order to control the sum of the errors in the concatenated
chain, we must know in advance the number of chains to be concatenated. This is
why we need Lemma 3.2 below.

Proof of Theorem 3.1(4). It is easy to see that SCRDdX,dY
(f × g) ⊂ SCRdX

(f) ×
SCRdY

(g). Take any (x, y) ∈ SCRDdX,dY
(f × g) and any ε > 0, and let ((x0, y0) =

(x, y), (x1, y1), . . . , (xn, yn) = (x, y)) be a strong (ε, f ×g,DdX,dY
)-chain from (x, y)

to itself. Then
∑n

i=1 dX(f(xi−1), xi) ≤
∑n

i=1 dX(f(xi−1), xi) + dY (g(yi−1), yi) =∑n

i=1 DdX ,dY
((f(xi−1), g(yi−1)), (xi, yi)) ≤ ε, so (x0 = x, x1, . . . , xn = x) is a

strong (ε, f, dX)-chain from x to itself. Since ε was arbitrary, we have x ∈ SCRdX
(f).

Similarly, we have y ∈ SCRdY
(g), and so (x, y) ∈ SCRdX

(f)× SCRdY
(g).

Next we show that SCRdX
(f)× SCRdY

(g) ⊂ SCRDdX,dY
(f × g). We must show

that for x ∈ SCRdX
(f), y ∈ SCRdY

(g), and ε > 0, there are strong ε-chains from x
to x and y to y of the same length. We use the following lemmas.

Lemma 3.2. For any x ∈ SCRdX
(f) and any ε > 0, there exists an n = n(x, ε) > 0

such that for any x′ with x ∼dX
x′, there is a strong ε-chain (x0 = x, x1, . . . , xn(x,ε) =

x) of length n(x, ε) from x to itself passing through x′, that is, such that xi = x′

for some i.

Proof of Lemma 3.2. Restrict f to the space Xx = {x′ : x ∼dX
x′}. Since Xx is

compact metric, it is separable; let {s1, s2, . . .} be a countable dense subset of Xx.
For each i, choose δi ≤

ε
3·2i such that if dX(z, w) ≤ δi, then dX(f(z), f(w)) ≤ ε

3·2i .
Since x ∼dX

si, there is a strong δi/2-chain from x to si, and one from si to x.
Concatenate these chains to get a strong δi-chain from x to itself passing through
si; call this chain Li. If dX(x′, si) ≤ δi, then we can substitute x′ for si in the chain
to get a strong ε

2i -chain from x to itself passing through x′ of the same length; call
this chain Li(x

′).
Pick a finite subcover of the open cover {Bδi(si)}

∞
i=1 of Xx; by renumbering if

necessary, we can assume that the subcover is {Bδi(si)}
N
i=1. Then x′ is in Bδi(si)

for some i. Concatenate the chains L1, L2, . . . , Li−1, Li(x
′), Li+1, . . . , LN to get

a chain from x to itself passing through x′. Since each Lj is a strong ε
2j -chain,

and
∑N

j=1
ε
2j < ε, the concatenation is a strong ε-chain. The length of the chain

is the sum of the lengths of the chains Lj, which is independent of x′, so define

n(x, ε) =
∑N

j=1 length(Lj).
�
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For any x ∈ SCRdX
(f) and ε > 0, define the set N(x, ε) to be {n : for every x′

with x ∼dX
x′, there is a strong ε-chain of length n from x to itself passing through

x′}. A set of natural numbers is an IP-set [10] if it consists of all finite sums of
some infinite set.

Lemma 3.3. For any x ∈ SCRdX
(f) and ε > 0, the set N(x, ε) contains an IP-set.

Proof of Lemma 3.3. Observe thatN(x, ε) contains all finite sums of the set {n(x, ε
2i )}

∞
i=1,

with n(x, ε
2i ) as in Lemma 3.2, since a concatenation of strong ε

2i -chains (with dis-
tinct i’s) is a strong ε-chain. If Xx does not consist of a single periodic orbit, then
necessarily n(x, ε

2i ) → ∞ as i → ∞, so the set {n(x, ε
2i )}

∞
i=1 is infinite. If Xx is a

single periodic orbit, {x, f(x), . . . , fp(x) = x}, then we can choose n(x, ε
2i ) = ip,

and again the set {n(x, ε
2i )}

∞
i=1 is infinite. �

We need the following result from [10]

Theorem 3.4 ([10, Theorem 12(ii)]). Any IP-set R is a set of topological recur-
rence. That is, for every compact metric space (Z, d), continuous map T : Z → Z,
and ε > 0, there are z ∈ Z and nonzero n ∈ R such that d(z, T n(z)) < ε.

Now take any point (x, y) in SCRdX
(f) × SCRdY

(g) and any ε > 0, and note
that Lemmas 3.2 and 3.3 apply to y and g as well. Consider g restricted to the
set Yy = {y′ : y ∼dY

y′}. Since N(x, ε/4) contains an IP-set, the theorem above
applied to g|Yy

guarantees that there exist a y′ ∈ Yy and an my ∈ N(x, ε/4) such

that dY (y
′, gmy(y′)) ≤ ε/4 . Thus (y′, g(y′), g2(y′), . . . , gmy−1(y′), y′) is a strong

(ε/4, g)-chain of length my from y′ to itself. Similarly, there exist an x′ ∈ Xx and
an mx ∈ N(y, ε/4) such that (x′, f(x′), . . . , fmx−1(x′), x′) is a strong (ε/4, f)-chain.

Since my ∈ N(x, ε/4), there is a strong (ε/4, f)-chain (x0 = x, x1, . . . , xi =
x′, . . . , xmy

= x) of length my from x to itself passing through x′. Similarly, there
is a strong (ε/4, g)-chain (y0 = x, y1, . . . , yj = y′, . . . , ymx

= y) of length mx from
y to itself passing through y′. Then

Lx = (x0 = x, x1, . . . , xi = x′, f(x′), . . . , fmx−1(x′), x′, xi+1, . . . , xmy
= x)

is a strong (ε/2, f)-chain of lengthmx+my from x to itself, and similarly Ly = (y0 =
y, y1, . . . , yj = y′, g(y′), . . . , gmy−1(y′), y′, yj+1, . . . , ymx

= y) is a strong (ε/2, g)-
chain of length mx + my from y to itself. Thus the product of the chains Lx

and Ly (that is, the chain ((x0, y0) = (x, y), (x1, y1), . . . , (x, y))) is a strong (ε, f ×
g,DdX,dY

)-chain of length mx +my from (x, y) to itself. Since ε was arbitrary, we
have (x, y) ∈ SCRDdX,dY

(f × g).
�

Proof of Theorem 3.1(5). Let (x, y) be a point in SCRDX
(f)×SCRDY

(g). As in the

proof of Theorem 3.1(4), for any ε > 0 we can construct a strong (ε/2, f,DX)-chain
(x0 = x, x1, . . . , xn = x) and a strong (ε/2, f,DY )-chain (y0 = y, y1, . . . , yn = y) of
the same length. Since for all i, 1 ≤ i ≤ n, we have D((f(xi−1), g(yi−1)), (xi, yi)) ≤
DX(f(xi−1), xi)+DY (g(yi−1), yi), the product chain ((x0, y0) = (x, y), . . . , (xn, yn) =
(x, y)) is a strong (ε, f × g,D)-chain. Since ε was arbitrary, we have (x, y) ∈
SCRD(f × g).

We prove that the inclusion can be strict by contradiction. Assume that SCRD(f×
g) = SCRDX

(f) × SCRDY
(g) for every metric D on X × Y compatible with the

product topology, and let (x, y) be a point in M(f×g). Thus there is a metric D for
which (x, y) ∈ SCRD(f × g), which implies that (x, y) ∈ SCRDX

(f) × SCRDY
(g),



GENERALIZED RECURRENCE AND THE NONWANDERING SET FOR PRODUCTS 7

which implies that (x, y) ∈ M(f)×M(g). But in Example 3.7 below, we construct f
and g such that M(f)×M(g) ( M(f × g), which means that the inclusion must be
strict for some metric on X × Y . (In fact, the metric derived from the Minkowski
?-function discussed in the example will work.)

�

Proof of Theorem 3.1(2). This follows from Theorem 3.1(4) and (5). We have

GR(f)×GR(g) ⊂ ∩D SCRDX
(f)× SCRDY

(g)

⊂ ∩D SCRD(f × g)

= GR(f × g),

where the intersection is over all metrics D on X × Y compatible with the product
topology, and

GR(f × g) ⊂ ∩dX ,dY
SCRDdX,dY

(f × g)

= ∩dX ,dY
SCRdX

(f)× SCRdY
(g)

= GR(f)×GR(g),

where the intersection is over all metrics dX and dY compatible with the topologies
on X and Y , respectively.

�

To prove that the inclusion in Theorem 3.1(3) can be strict, we need an alterna-
tive description of the Mañé set M(f), in terms of ordinary chain recurrence.

Definition 3.5. We say that x is chain-recurrent through A if for every ε > 0,
there is an ε-chain from x to itself lying entirely in A. We denote by CRA(f) the
set of points chain-recurrent through A. (Note that if A is a closed invariant set,
then CRA(f) = CR(f |A), where f |A : A → A is the restriction of f to A.)

Fathi and Pageault originally proved the following result for homeomorphisms
([8, Theorem 3.5]). Here, we extend the result to continuous maps and give a
somewhat more topological, less technical proof.

Theorem 3.6. M(f) = Fix(f) ∪CRX\ Int(Fix(f))(f).

Proof. We first prove that M(f) ⊂ Fix(f) ∪ CRX\ Int(Fix(f))(f). Take any point x
not in Fix(f)∪CRX\ Int(Fix(f))(f) and any metric d′ compatible with the topology
on X . We will show that x 6∈ SCRd′(f); since d′ was arbitrary, this implies that
x 6∈ M(f).

First, we show that there exist an ε0 > 0 and an α > 0 such that for any ε ≤ ε0,
any (ordinary, not strong) (ε, d′)-chain from x to itself must pass through the α-
interior of Fix(f). (The α-interior of Fix(f) is {z : Bd′(z;α) ⊂ Fix(f)}, which we
will denote by Intα(Fix(f)).) Assume not. Then for any α > 0, there exists a
sequence {εj} tending to 0 such that for each j there is an εj-chain from x to itself
which stays entirely within α of X\ Int(Fix(f)). For a given ε, choose δ > 0 such
that if d′(x′, x′′) < δ, then d′(f(x′), f(x′′)) < ε/3; then choose α < min(ε/3, δ) and
εj < α and let (x0 = x, x1, . . . , xn = x) be an εj-chain which stays entirely within
α of X\ Int(Fix(f)). For each xi, 0 < i < n, there is a point x̃i ∈ X\ Int(Fix(f))
with d′(xi, x̃i) < α; then (x0 = x, x̃1, . . . , x̃n−1, xn = x) is an ε-chain that stays
entirely in X\ Int(Fix(f)). Since ε was arbitrary, we have x ∈ CRX\ Int(Fix(f))(f),
contrary to assumption.
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Thus there exist an ε0 > 0 and an α > 0 such that for any ε ≤ ε0, any ε-chain
from x to itself must pass through Intα(Fix(f)). Now choose an ε < min(ε0, α) and
let (x0 = x, x1, . . . , xn = x) be an ε-chain from x to itelf. Let m be the smallest
index such that xm ∈ Intα(Fix(f)), and let m + k be the smallest index greater
than m such that xm+k 6∈ Fix(f). Then f(xi) = xi for i = m, . . . ,m+ k− 1, so we

have that
∑n

i=1 d
′(f(xi−1), xi) ≥

∑m+k

i=m+1 d
′(f(xi−1), xi) =

∑m+k

i=m+1 d
′(xi−1, xi) ≥

d′(xm, xm+k) ≥ α. Thus x 6∈ SCRd′(f), as desired.
Next we show that Fix(f) ∪ CRX\ Int(Fix(f))(f) ⊂ M(f). Let d be a metric on

X compatible with the topology. It is obvious that any fixed point is in M(f),
so assume that for any ε > 0, there is an (ε, f, d)-chain from x to itself lying in
X\ Int(Fix(f)). We will use the alternative definition for M(f) from Theorem 2.7.
Let D be a closed neighborhood of the diagonal; we must find a closed symmetric
neighborhood N of the diagonal and an integer n > 0 such that N 3n ⊂ D and
there is an (N , f)-chain of length n from x to itself. Choose ε such that V(4ε) ⊂
D, choose δ ≤ ε

2 such that if d(z1, z2) ≤ δ, then d(f(z1), f(z2)) ≤ ε
2 , and let

(x0 = x, x1, . . . , xn = x) be a δ-chain from x to itself contained in X\ Int(Fix(f));
by starting with a δ

2 -chain and perturbing the points slightly if necessary, we can
assume that in fact (x0 = x, x1, . . . , xn = x) is contained in X\Fix(f).

For 1 ≤ i ≤ n, let Ci = Bd(f(xi−1); δC) ∪ Bd(xi; δC), where δC will be chosen
later. To construct N , we will need to ensure that the Ci’s are pairwise disjoint;
thus we need to ensure that for i < j, we have xi 6= xj , xi 6= f(xj−1), f(xi−1) 6= xj ,
and f(xi−1) 6= f(xj−1). First, in the cases xi = xj , f(xi−1) = xj , and f(xi−1) =
f(xj−1), we can shorten the chain to (x0, . . . , xi−1, xj , xj+1 . . . , xn) and still have
a δ-chain from x0 = x to xn = x. Now consider the case xi = f(xj−1); we must
have j > i + 1, since xj−1 is not fixed. Let i′ be the smallest index such that
x′
i = f(xj−1) for some j > i + 1, and let j′ be the largest such j for i′. Then the

shortened chain (x0 = x, x1, . . . , xi′−1, xi′ , xj′+1, xj′+2, . . . , xn = x) is an ε-chain,
since d(f(xi′ ), xj′+1) ≤ d(f(xi′), f(xj′ )) + d(f(xj′ ), xj′+1) = d(f2(xj′−1), f(xj′ )) +
d(f(xj′ ), xj′+1) ≤

ε
2 +δ ≤ ε. We may have to perform this truncation several times,

but, by construction, the consecutive terms xi′ , xj′+1 will remain, and thus we will
end up with an ε-chain, which we will still denote by (x0 = x, x1, . . . , xn = x).

Choose δC ≤ ε small enough that the collection {Ci : 1 ≤ i ≤ n} is pairwise
disjoint, and choose ε0 < mini6=j d(Ci, Cj); we can assume that ε0 ≤ ε as well.
Now define N = V( ε0

3n )
⋃
(
⋃n

i=1 Ci × Ci). Since (f(xi−1), xi) is in Ci × Ci, we

have that (x0 = x, x1, . . . , xn = x) is an (N , f)-chain. To see that N 3n ⊂ D,
let z0, z1, . . . , z3n be a sequence with (zj−1, zj) ∈ N for 1 ≤ j ≤ 3n; we want to
show that d(z0, z3n) ≤ 4ε. Since the Ci’s are more than ε0 apart, there exists at
most one Ci such that there is a pair (zj , zj+1) in the chain in Ci × Ci; thus any
other two consecutive points must be within ε0

3n of each other. So d(z0, z3n) ≤
3n · ε0

3n +max{diam(Ci)} ≤ ε0 + ε+ 2δC ≤ 4ε.
�

Proof of Theorem 3.1(3). We first use Theorem 3.6 to show that M(f×g) ⊃ M(f)×
M(g). (This also follows from Theorem 3.1(4).) Take any point (x, y) ∈ M(f) ×
M(g). If either x or y is fixed, then (x, y) is clearly in M(f × g), so assume that
x ∈ CRX\ Int(Fix(f))(f) and y ∈ CRY \ Int(Fix(g))(g). For any ε > 0, there exist
an (ε/2, f, dX)-chain (x0 = x, . . . , xm = x) in X\ Int(Fix(f)) and an (ε/2, g, dY )-
chain (y0 = y, . . . , yn = y) in Y \ Int(Fix(g)). We may assume that m = n (if
not, concatenate the first chain with itself n times and the second with itself m
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times to get two chains of equal length). Then the product chain ((x0, y0) =
(x, y), . . . , (x, y)) is an (ε, f × g,DdX,dY

)-chain in (X × Y )\ Int(Fix(f × g)). Since
ε was arbitrary, we have (x, y) ∈ M(f × g).

The following example shows that the inclusion can be strict.

Example 3.7 ([15, Example 3.8]). Let X be the circle with the usual topology,
and let f : X → X be a map fixing every point on the closed left semicircle and
moving points on the open right semicircle counterclockwise. Then by Theorem 3.6,
M(f) is the closed left semicircle. Let Y be the set {0, 1} and g : Y → Y the
permutation switching the two points; then M(g) = Y . Since f × g has no fixed
points, M(f ×g) = CR(f ×g) = X×Y , which strictly contains M(f)×M(g). (One
can show that if we define the metric D on X×Y by giving X×{0} the usual circle
metric and X×{1} the usual metric on the left semicircle and the metric induced by
the Minkowski ?-function on the right semicircle, we have SCRD(f × g) = X × Y .)

�

The generalized recurrent set was originally defined in terms of Lyapunov func-
tions, and Fathi and Pageault showed in [8] that the strong chain recurrent set can
be defined in terms of Lipschitz Lyapunov functions, so we can restate some of our
main results. Let θ : X → R be a Lyapunov function for f (that is, θ(f(x)) ≤ θ(x)
for all x). Following the notation in [8], denote by N(θ) the set of neutral points,
N(θ) = {x ∈ X : θ(f(x)) = θ(x)}. Let L(f) be the set of continuous Lya-
punov functions for f , and let LdX

(f) be the set of Lipschitz (with respect to
the metric dX) Lyapunov functions for f . Since GR(f) =

⋂
θ∈L(f)N(θ) [1,3,4] and

SCRdX
(f) =

⋂
θ∈LdX

(f) N(θ) [8], we have the following corollaries to Theorem 3.1.

Corollary 3.8. Let f : X → X and g : Y → Y be continuous maps of compact
metric spaces, with metric dX and dY , respectively.

(1) A point (x, y) is in
⋂

Θ∈L(f×g) N(Θ) if and only if x is in
⋂

θ∈L(f)N(θ)

and y is in
⋂

φ∈L(g) N(φ).

(2) A point (x, y) is in
⋂

Θ∈LDdX,dY
(f×g) N(Θ) if and only if x is in

⋂
θ∈LdX

(f) N(θ)

and y is in
⋂

φ∈LdY
(g) N(φ).

Theorem 3.1 also gives an easy proof of the following well-known result from
number theory. For real numbers w and z, denote by |w−z|1 the difference in their
fractional parts; that is, |w − z|1 = |w − z| (mod 1).

Corollary 3.9. Let α and β be real numbers. Then for any ε > 0, there are
infinitely many positive integers n such that |nα− nβ|1 < ε.

Proof. Let S1 be the circle, considered as R/Z, with metric d(x1, x2) = |x1 − x2|1,
and let Rθ : S1 → S1 be rotation by some θ, Rθ(x) = x + θ (mod 1). It is clear
that x is strong chain recurrent for Rθ for every x and every θ, and so, by Theo-
rem 3.1(4), (0, 0) ∈ SCRDd,d

(Rα ×Rβ). Let ((x0, y0) = (0, 0), . . . , (xn, yn) = (0, 0))
be a strong (ε,Rα × Rβ , Dd,d)-chain; since Rα × Rβ is an isometry, we have that
Dd,d((xn, yn), (Rα × Rβ)

n(x0, y0)) ≤ ε. Thus ε ≥ Dd,d((Rα × Rβ)
n(0, 0), (0, 0)) =

|nα|1 + |nβ|1 ≥ |nα − nβ|1. Since this is true for any ε, there must be infinitely
many such n. �

A point x is (positively) recurrent for f : X → X if, for any neighborhood U
of x, x returns to U , that is, fn(x) ∈ U for some n > 0. Thus any recurrent
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point is nonwandering. A recurrent point x is product recurrent if for any recurrent
point y of any map g : Y → Y , the point (x, y) is recurrent for the product map
f × g. It is well known that a point is product recurrent if and only if it is distal
[11, Theorem 9.11]. We have a somewhat analogous result for nonwandering points.

Definition 3.10. Let f : X → X be a continuous map of a compact metric space.
A point x in X is product nonwandering if, for any continuous map g : Y → Y
of a compact metric space and any nonwandering point y for g, the point (x, y) is
nonwandering for f × g. The map f is locally (topologically) mixing at x if for any
neighborhood U of x, there exists an integer N such that fn(U) ∩ U 6= ∅ for all
n ≥ N .

Any topologically mixing map (such as the doubling map on the circle) is locally
mixing at every point. The disjoint union of two circles, with the map given by
doubling on each circle, is not topologically mixing, but it is locally mixing at every
point; the same is true for the identity map on any nontrivial space. More generally,
a map is locally mixing at any fixed point.

Example 3.11. Let X be the unit disk in R2 and let f : X → X be a map that
fixes the center (0, 0) and the north pole (0, 1), moves other interior points in a
clockwise spiral out towards the boundary circle, and moves points on the circle
clockwise toward the north pole. Then the nonwandering set consists of the center
and the boundary circle, and f is locally mixing at every nonwandering point.

Theorem 3.12. Let f : X → X be a continuous map of a compact metric space
to itself. A point x in X is product nonwandering if and only if f is locally (topo-
logically) mixing at x.

Proof. We prove the “if” direction first. Take any y ∈ NW(g) and any neighborhood
W of (x, y) in X × Y . Let U and V be neighborhoods of x in X and y in Y ,
respectively, such that U × V ⊂ W , and choose N such that fn(U) ∩ U 6= ∅
for all n ≥ N . The set of return times for V , {m > 0 : gm(V ) ∩ V 6= ∅}, is
infinite [6, Proposition 4.3.2]. Thus there exists a return time m ≥ N , so we have
(f × g)m(W )∩W ⊃ (f × g)m(U ×V )∩ (U ×V ) = (fm(U)∩U)× (gm(V )∩V ) 6= ∅.
Since W was arbitrary, (x, y) is nonwandering for f × g.

To prove the “only if” direction, we use the following proposition, which may be
of independent interest.

Proposition 3.13. Let M be any infinite set of natural numbers. Then there
exist a continuous map gM : YM → YM of a compact metric space to itself, a point
y ∈ NW(gM), and a neighborhood V of y such that {m > 0 : gmM(V )∩V 6= ∅} = M.

Proof of Proposition 3.13. Let M = {mi}∞i=1, with m1 < m2 < . . . . We construct
the space YM =

⋃∞
i=0 Yi as a subset of R2, where the spaces Yi and the map gM are

defined as follows; see Figure 1 for an example with m1 = 3, m2 = 5, and m3 = 6.
Define Y0 = {(0, 0)} ∪ {( 1

n
, 0) : 1 ≤ n < ∞}, and define

gM(
1

n
, 0) = (

1

n− 1
, 0) (n > 1)

gM(1, 0) = (0, 0)

gM(0, 0) = (0, 0).
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Figure 1. The map gM : YM → YM from Proposition 3.13

For i ≥ 1, define Yi = {( 1
n
, 1
i
) : 1 ≤ n ≤ mi}, and define

gM(
1

n
,
1

i
) = (

1

n− 1
,
1

i
) (n > 2)

gM(
1

2
,
1

i
) = (1, 0)

gM(1,
1

i
) = (

1

mi

,
1

i
)

(unless mi = 1, which can happen only if i = 1; then gM(1, 1) = (1, 0)).
The set YM is compact and the map gM is continuous. Observe that gkM(1, 0) =

(0, 0) for k ≥ 1, and that gmi

M (1, 1
i
) = (1, 0). The point y = (1, 0) is nonwandering,

because every neighborhood of y contains a point of the form (1, 1
i
). The set

V = {y} ∪ {(1, 1
i
) : 1 ≤ i < ∞} is a neighborhood of y such that {m > 0 :

gmM(V ) ∩ V 6= ∅} = M.
�

Now assume that f is not locally mixing at x; we will show that x is not product
nonwandering. Since f is not locally mixing at x, there exists a neighborhood U
of x such that the set of non-return times, {n > 0 : fn(U) ∩ U = ∅}, is infinite; let
this set be M. Consider the map f × gM : X×YM → X×YM. Since V returns to
itself under gM only at times in M, and U returns to itself under f only at times
not in M, the neighborhood U × V of (x, y) never returns to itself under f × gM.
Thus (x, y) is not nonwandering, and so x is not product nonwandering.

�

So, for example, if f is a nontrivial rotation of the circle, then every point is
product recurrent but not product nonwandering. Conversely, in Example 3.11,
every nonwandering point is product nonwandering, but only the fixed points are
product recurrent.
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