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We give a new and elementary proof showing that a homeomorphism f :X →X of a compact
metric space is positively expansive if and only if X is finite.
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1. Introduction. A continuous map f : X → X on a metric space X is positively ex-
pansive if there exists ρ > 0 such that for any distinct x,y ∈ X there is an n ≥ 0 with
d(fn(x),fn(y)) > ρ. The constant ρ is called the expansive constant. In this note we
give a simple, new proof of the following theorem.

Theorem 1.1. Let X be a compact metric space. A homeomorphism f : X → X is
positively expansive if and only if X is finite.

This result was first proved by Schwartzman [12]. Later, Gottschalk and Hedlund
proved several results that had, as an unstated corollary, the fact that X must have
an isolated point (see [4, Theorems 10.30 and 10.36]). One can use this observation to
prove that all points are isolated, and thus that X is finite. Then Keynes and Robertson
[7] gave a proof using the idea of generators for topological entropy. Later, the theorem
was proved by Hiraide [6]. His proof requires a technical result of Reddy which in turn
uses Frink’s metrization theorem to find a compatible metric with respect to which the
homeomorphism is expanding (see [2, page 41] and [3, 9]). In this note we give a proof
that is short and dynamical and relies only on elementary topological arguments.

As Theorem 1.1 illustrates, positive expansiveness is a very restrictive property. One
cannot restate the theorem for expansive homeomorphisms (a homeomorphism f is
expansive if there exists ρ > 0 such that if d(fn(x),fn(y)) < ρ for every integern, then
x =y). Although some compact spaces do not admit expansive homeomorphisms (such
as the 2-sphere, the projective plane, the Klein bottle (see [5])), others do. For instance,
O’Brien and Reddy proved that every compact orientable surface of positive genus ad-
mits an expansive homeomorphism (see [8]). Also, every Anosov diffeomorphism is
expansive.

Furthermore, one cannot state the same theorem for noninvertible dynamical sys-
tems. For instance, the doubling map on S1 is a positively expansive continuous map.
Hiraide does prove that no positively expansive map exists on any manifold with bound-
ary (see [6]).
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We remind the reader of some standard definitions. Let f : X → X be a homeomor-
phism. The ω-limit set of a point x ∈X is defined to be

ω(x)=
⋂

N>0

cl

( ⋃

n>N
fn(x)

)
. (1.1)

A set S is invariant if f(S) = S. We denote the maximal invariant subset of a set N
by InvN. An invariant set S is an isolated invariant set provided there is a compact
neighborhood N of S with the property that S = InvN; the set N is an isolating neigh-
borhood for S. A set S is an attractor if there is an isolating neighborhood N for S
with the property that f(N) ⊂ IntN (IntN is the interior of N); in this case N is called
an attracting neighborhood. Likewise, S is a repeller if it has a repelling neighborhood,
an isolating neighborhood N with the property f−1(N) ⊂ IntN. Finally, we let Bε(x)
denote the ε-ball about x.

2. Bounded dynamical systems. This work relies heavily on the notion of bounded
dynamical systems (see [10, 11]). A dynamical system is bounded if there exists a com-
pact set W with the property that the forward orbit of every point in X intersects W .
Such a set,W , is called a window. Clearly every dynamical system on a compact space X
is bounded, thus the notion of boundedness is only interesting for noncompact spaces.

Below we state several properties that are equivalent to boundedness; the theorem
is proved in [10], but since the proof is short we include it again here. We note that the
theorem is also true for flows or semiflows and the proof is nearly identical to the one
given below.

Theorem 2.1. If X is a locally compact metric space and f : X → X is a continuous
map, then the following are equivalent:

(1) f is bounded;
(2) there is a compact set V such that ∅ '=ω(x)⊂ V for all x ∈X;
(3) there exists a forward invariant window;
(4) there is a compact global attractor Λ (i.e., there is an attractor Λ with the property

that ∅ '=ω(x)⊂Λ for every x ∈X).

Proof. It is clear that (4)⇒(3)⇒(2)⇒(1). Thus, we must prove that the existence of a
window implies the existence of a compact global attractor, (1)⇒(4).

Suppose f has a window W . It suffices to show that there is a window W1 with the
property f(W1) ⊂ Int(W1). For each x ∈ X, there is an nx ≥ 0 such that fnx(x) ∈ W .
Let δ> 0, and let W0 = cl(Bδ(W)), the closure of the δ-neighborhood of W . Clearly, for
each x ∈ W0, cl(Bδ/2(fnx (x))) ⊂ IntW0. Moreover, there is an open neighborhood Ux
of x such that cl(Bδ/2(fnx (y))) ⊂ IntW0 for all y ∈ Ux . The sets {Ux : x ∈ W0} form
an open cover of W0. Since W0 is compact, there is a finite subcover, {Ux1 , . . . ,Uxm}. Let
n=max{nxk : k= 1, . . . ,m}. It follows that

⋃n
k=0fk(W0) is a forward invariant window

(thus proving (3)). However, we would like the stronger result of (4).
Consider the multivalued map Vr (x)= Br (x). By the compactness of W0, there is an

ε > 0 such that (Vε ◦f)nxi (y) ⊂ IntW0 for all y ∈ Uxi . Then, the set W1 =
⋃n
k=0(Vε ◦

f)k(W0) has the desired property.
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3. Positively expansive homeomorphisms on compact spaces. In the discussion
that follows it is necessary to work in the product spaceX×X. Given a homeomorphism
f : X → X, we use the notation f ×f : X×X → X×X to denote the homeomorphism
(f ×f)(x1,x2) = (f (x1),f (x2)). Also, we let ∆ = {(x,x) : x ∈ X} denote the diagonal
of X×X.

It is well known that a homeomorphism f : X → X of a compact space X is ex-
pansive if and only if the diagonal ∆ is an isolated invariant set for f × f (see [1]).
Analogously we prove that for positively expansive homeomorphisms the diagonal is
a repeller.

Lemma 3.1. Let f : X → X be a positively expansive homeomorphism of a compact
space X. Then ∆ is a repeller for f ×f :X×X →X×X.

Proof. Suppose X is a compact space and f :X →X is a positively expansive home-
omorphism with expansive constant ρ. If X is a one-point space, the conclusion of the
lemma is clearly true. Thus we may assume that X has at least two points. Consider
the space X×X and the homeomorphism F = f ×f . F restricts to a homeomorphism
FY : Y → Y , where Y = (X×X)\∆. Let W = {(x,y) ∈ Y : dX(x,y) ≥ ρ}. Clearly W is a
compact set and, since f is positively expansive, the forward orbit of every point in Y
intersects W . Thus W is a window for FY , and we conclude that FY is bounded.

By Theorem 2.1 there exists a window W1 ⊂ Y for FY with FY (W1) ⊂ Int(W1). Then
the set N = cl((X×X)\W1) has the property that F−1(N)⊂ IntN and InvN =∆. Thus ∆
is a repeller for F .

Proof of Theorem 1.1. Let f : X → X be a positively expansive homeomorphism
of a compact space X. Let g = f−1 and G = g × g : X ×X → X ×X. By Lemma 3.1
the diagonal ∆ ⊂ X ×X is an attractor for G. Thus, for (x,y) sufficiently close to ∆,
Gn(x,y)→∆ as n→∞. More precisely, there exists ε > 0 such that if d(x,y) < ε, then
d(gn(x),gn(y))→ 0 as n→∞.

Define an equivalence relation ∼ on X as follows: x ∼ y if and only if there exists a
sequence of points x = x0,x1, . . . ,xr = y such that d(xk,xk+1) < ε for k = 0, . . . ,r −1.
This equivalence relation is an open condition, thus each equivalence class is an open
subset of X. Since the set of equivalence classes is a cover of X by mutually disjoint
open sets, the compactness of X implies that there are only finitely many U1, . . . ,Um.
Also, since each Ui contains its limit points, it is closed, and hence compact.

Let U be an equivalence class, and let x,y ∈ U . Then there is a sequence x =
x0,x1, . . . ,xr =y such thatd(xk,xk+1) < ε for k= 0, . . . ,r−1. So,d(gn(xk),gn(xk+1))→
0 as n → ∞ for each k = 0, . . . ,r −1. Thus d(gn(x),gn(y)) → 0 as n → ∞. Since U is
compact, the diameter of gn(U) goes to zero as n→∞.

For each n, gn(U1), . . . ,gn(Um) is a collection of mutually disjoint sets whose union
is all of X. Moreover, the diameter of each set gn(Ui) can be made arbitrarily small
(letting n get large). Thus, it must be the case that each Ui consists of a single point,
and that X is a finite set.

Acknowledgment. We would like to thank Ethan Coven for bringing to our atten-
tion that Theorem 1.1 was first proved by Schwartzman [12].
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