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Abstract. We consider a method for assigning a sofic shift to a (not neces-

sarily nonnegative integer) matrix by associating to it a directed graph with

some vertices labelled 1 and the rest 2 (the decomposition of the vertices is
arbitrary - in applications the choice should be natural). We can detect pos-

itive topological entropy for this sofic shift by comparing the characteristic

polynomial of the original matrix to those for the matrices for the restrictions
of the shifts to each piece (1 and 2). Our main application is to the use of the

Conley index to detect symbolic dynamics in isolated invariant sets, and is an
extension of a result by Carbinatto, Kwapisz, and Mischaikow.

1. Introduction. If M is a square matrix with nonnegative integer entries, then
we can associate to it a subshift of finite type by considering it as the adjacency
matrix for a directed graph. In this case, the topological entropy of the subshift
will be equal to the log of the spectral radius of M . In this paper, we consider
subshifts associated to matrices with arbitrary entries (the associated shift will be
that corresponding to the matrix with each nonzero entry of the original matrix
replaced by 1). Here the spectral radius gives no information about the entropy,
because of the change in absolute value of the entries and cancellation of signed
terms.

We can factor this shift onto a sofic shift by labelling some of the vertices of the
associated graph 1 and the others 2. We can detect positive entropy for this sofic
shift by comparing the characteristic polynomial of the original matrix to those for
the matrices for the restrictions of the shifts to each piece (1 and 2). If our matrix
represents a homology map induced by a self-map of a topological space, then in
some cases the vertex decomposition will be natural, and the resulting sofic shift
will have dynamical significance.

Our main application is to the detection of symbolic dynamics in isolated invari-
ant sets. Let N be an isolating neighborhood for a map f . If we can decompose
N into the disjoint union of compact sets N1 and N2, then we can relate the dy-
namics on the maximal invariant set InvN to the shift on two symbols by noting
which component of N each iterate of a point x ∈ InvN lies in. In [2], it is shown
that if the eigenvalues of the Conley index map for N differ in a certain way from
those for N1 and N2, then there exists a positive integer d such that fd factors
onto the full shift on two symbols. The number d is not specified, however, so this
result provides no estimate for the topological entropy of f . With some additional
hypotheses, we provide an upper bound for d, and thus a lower bound for htop(f).
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Figure 1. Graph corresponding to a sofic shift

2. Sofic shifts. Sofic shifts are a generalization of subshifts of finite type originally
developed by Weiss in [11]. Our discussion is taken from that in [8], which contains
proofs and more formal definitions.

We can think of a subshift of finite type as corresponding to a directed graph,
with vertex set {vi}. We say that vi → vj (vj can follow vi) if there is an edge
running from vertex vi to vertex vj .

The (one-sided) subshift of finite type associated to a graph consists of all infinite
sequences of vertices (vi0 , vi1 , . . . ) such that vij → vij+1 for all j ≥ 0, along with the
shift map σ defined by σ((vi0 , vi1 , . . . )) = (vi1 , vi2 , . . . ). Note that many different
graphs may correspond to the same subshift of finite type.

Given a graph, we define its adjacency matrix A = (aij) by setting

aij =

{
1 if vj → vi,
0 otherwise.

We construct a sofic shift in the same way, except that we now give each vertex
vi a label, L(vi) (some of the vertices may have the same label). The sofic shift
associated to a labelled directed graph consists of all infinite sequences of labels
(L(vi0), L(vi1), . . . ) such that vij

→ vij+1 for all j ≥ 0, along with the shift map
σ. See Figure 1. (That graph corresponds to the even shift, i.e., the space of all
sequences of 1’s and 2’s with each block of 2’s having even length.)

We will consider primarily sofic shifts that are subshifts of (Σ+
2 , σ), the full (one-

sided) shift on the two symbols {1, 2}.

3. Sofic shifts from signed matrices. In making the following definitions, we
will be considering a real n × n matrix M as representing a directed graph with
weighted edges. The vertices of the graph are the basis elements v1, . . . , vn. There
is an edge running from vi to vj if Mji 6= 0, and its weight is Mji. Thus M -paths
for the matrix correspond to paths in the graph, and the weight of a path is the
product of the weights of its component edges. The shift associated to M will be
that for the adjacency matrix constructed by replacing each nonzero entry of M by
1. Later we will consider the sofic shift that we get by sorting the vertices into two
distinct classes.

More formally, let V be an n-dimensional vector space with basis {v1, . . . , vn},
and M an n × n matrix, which we can consider as representing a map on V with
the given basis. For 1 ≤ j ≤ n, define projection maps pj : V → R as follows: if
v =

∑n
i=1 aivi, set pj(v) = aj .

Definition 3.1. An M -path γ = (γ0, . . . , γm) = (vr0 , . . . , vrm) from vi to vj of
length m (where m is a positive integer) is an ordered (m+ 1)-tuple of elements of
{v1, . . . , vn} with γ0 = vi and γm = vj such that prk+1(M(γk)) 6= 0 for 0 ≤ k < m.
(Note that a path must have length at least one, i.e., a single element is not a path.)
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Figure 2. Weighted graph corresponding to M

We denote by l(γ) its lengthm and define its weight w(γ) to be
∏m−1

k=0 prk+1(M(γk)).
We will also consider infinite M -paths γ = (γ0 = vi, γ1, γ2, . . . ).

An M -loop λ at vi is an M -path from vi to vi.

Example 3.2. Let M =
(

1 3
−2 0

)
, corresponding to the graph in Figure 2 (the

number along each edge represents its weight). Then (v1, v2, v1) is an M -loop
at v1 of length two and weight -6, since p2(M(v1)) = p2(v1 − 2v2) = −2 and
p1(M(v2)) = p1(3v1) = 3.

Observe that if pj(Mm(vi)) 6= 0, then there must be an M -path of length m
from vi to vj . The converse is not true, as the following example shows. (It is true
if M is nonnegative.)

Example 3.3. Let M =
(

1 −1
1 −1

)
. Then for any m ≥ 1 and any i and j, there is an

M -path of length m from vi to vj . But Mm = 0 for m ≥ 2.

Next, we see that there is a strong relation between M -loops of a matrix M and
its characteristic polynomial.

Proposition 3.4. For 1 ≤ i, j ≤ n and m ≥ 1, (Mm)ji =
∑
w(γ), where the sum

is taken over all M -paths from vi to vj of length m.

Proof. First, observe that

M(vi) =
n∑

k=1

Mkivk =
∑

{k | Mki 6=0}

Mkivk =
∑

w(γk)vk,

where the last sum is taken over all k such that there is a (necessarily unique)
path γk from vi to vk of length one. The result then follows from linearity and
the fact that every path is a concatenation of paths of length one. (Compare [9,
Lemma III.2.2], which is the same proposition for nonnegative adjacency matrices.)

Corollary 3.5. For 1 ≤ i ≤ n and m ≥ 1, (Mm)ii =
∑
w(λ), where the sum is

taken over all M -loops at vi of length m.

Corollary 3.6. The characteristic polynomial of M depends only on the set of
M -loops λ with 1 ≤ l(λ) ≤ n and their weights w(λ).

Proof. Newton’s formula ([4, §92]) tells us that knowledge of tr(Mm) for 1 ≤ m ≤ n
is equivalent to knowledge of the characteristic polynomial of M . Since tr(Mm) =∑n

i=1(M
m)ii, the result follows from Corollary 3.5.

Definition 3.7. Let vi and vj be basis elements of V . We say that vi and vj are
in the same M -communicating class (or write vi ∼M vj) if there exist an M -loop
at vi containing vj and an M -loop at vj containing vi, or if i = j. (This is a
generalization of the definition of communicating classes given in [8, §4.4].)

Proposition 3.8. The relation ∼M is an equivalence relation on the set {v1, . . . , vn}.
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Figure 3. Weighted graphs corresponding to M and Mred

Proof. It is clear that ∼M is reflexive and symmetric. We must show that it is
transitive. Assume that vi ∼M vj and vj ∼M vk. If any two of the vertices are
equal, then it is immediate that vi ∼M vk. So assume that all three are different.
Let λ = (λ0 = vi, λ1, . . . , λp = vj , . . . , λq = vi) be an M -loop at vi containing vj ,
and µ = (µ0 = vj , . . . , µr = vk, . . . , µs = vj) an M -loop at vj containing vk. Then
(λ0, λ1, . . . , λp = µ0, µ1, . . . , µr = vk, . . . , µs = λp, λp+1, . . . , λq) is an M -loop at vi

containing vk, so vi ∼M vk.

Thus {v1, . . . , vn} is partitioned by ∼M into the disjoint union of M -communicat-
ing classes

∐
Wi. We will at times abuse notation by considering eachWi as a vector

subspace of V (namely the subspace spanned by the vectors contained in Wi).

Definition 3.9. An M -communicating class Wi is M -nontrivial if for every vj in
Wi, there is an M -loop at vj (i.e., Wi does not consist of a single vertex with no
loop through it). Wi is M -trivial otherwise (i.e., Wi is a single vertex with no loop
through it).

Example 3.10. Let M =

(
1 0 0 0 0
−1 0 0 0 0
0 2 0 3 0
0 0 1 0 0
0 0 0 −2 0

)
, with corresponding graph in Figure 3(a).

The M -trivial M -communicating classes are {v2} and {v5} and the M -nontrivial
classes are {v1} and {v3, v4}.

Given M , we define Mred, the reduced matrix, by setting

(Mred)ij =

{
Mij if vi ∼M vj ,
0 if vi 6∼M vj .

That is, the graph represented by Mred is the graph represented by M with all
edges between vertices in different M -communicating classes removed.

Example 3.11. Let M be the matrix defined in Example 3.10. Then Mred =(
1 0 0 0 0
0 0 0 0 0
0 0 0 3 0
0 0 1 0 0
0 0 0 0 0

)
. Its corresponding graph is in Figure 3(b).

For each M -communicating class we define the square matrix MWi to be the
submatrix of M corresponding to the induced map from Wi to Wi. The graph
represented by MWi

corresponds to the subgraph of M ’s graph consisting of the
vertices of Wi and the edges among them.

Remark 3.12. Mred = ⊕MWi (possibly after permuting the order of the basis ele-
ments).
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Example 3.13. Let M and Mred be as in Examples 3.10 and 3.11. Then Mred =
1 0

0 0

0 0
0 0

0
0

0 0
0 0

0 3
1 0

0
0

0 0 0 0 0

, where each boxed submatrix is an MWi
.

Given a square matrix A, let CA(X) denote its characteristic polynomial.

Lemma 3.14. CM (X) = CMred(X) =
∏

Wi
CMWi

(X), where the product is taken
over all M -communicating classes Wi.

Proof. To prove the first equality, note that we removed only edges joining vertices
in different M -communicating classes to produce Mred from M . Thus M and Mred

have exactly the same loops with the same weights, and the equality follows from
Corollary 3.6. The second equality follows from Remark 3.12.

Proposition 3.15. If an M -communicating class Wi is M -trivial, then MWi
= (0),

the 1× 1 matrix whose entry is 0.

Proof. By definition, Wi = {vj}, where vj is a vertex with no M -loop through it.
Thus MWi

= (Mjj) = (0).

We now assume that we decompose V into two parts. We can then associate
a sofic shift to a matrix by labelling each vertex according to which part it is in
and looking at the resulting itineraries of paths. More formally, let V1 and V2

be positive-dimensional vector spaces, with bases {v1
1 , . . . , v

1
n1
} and {v2

1 , . . . , v
2
n2
}

respectively. Let M1 be an n1 × n1 matrix representing a map on V1, and M2 an
n2 × n2 matrix representing a map on V2. Define the (n1 + n2)× (n1 + n2) matrix
M := M1 ⊕M2, so that M has the form

(
M1 0
0 M2

)
.

Let M ′ : V1 ⊕ V2 → V1 ⊕ V2 be another (n1 + n2)× (n1 + n2) matrix such that
M ′|V1 : V1 → V1 = M1 and M ′|V2 : V2 → V2 = M2 (so that M ′ has the form(

M1 P
Q M2

)
).

Remark 3.16. Any M -path is also an M ′-path, since the graph represented by M ′

consists of the graph represented by M plus additional edges, represented by the
matrices P and Q, linking vertices in V1 to vertices in V2 and vice versa.

Define a map π : {v1
1 , . . . , v

1
n1
, v2

1 , . . . , v
2
n2
} → {1, 2} by setting π(vj

i ) = j for
j = 1, 2 and i = 1, . . . , nj . If γ = (γ0, . . . , γl) is an M ′-path of length l (where l
is either a positive integer or infinity), define ψ(γ), the itinerary of γ, to be the
element of {1, 2}l given by

ψ(γ) = (π(γ0), π(γ1), . . . , π(γl)).

If γ is anM ′-loop (i.e., l is finite and γ0 = γl), then define its nonredundant itinerary
ψ̄(γ) by setting

ψ̄(γ) = (π(γ0), π(γ1), . . . , π(γl−1)).
(The redundancy refers to the equality of the first and last entries of the regular
itinerary ψ(γ).)

Example 3.17. Let M1 =
(

1 3
−2 0

)
(with corresponding graph in Figure

4(a)), and M2 = (2) (see Figure 4(b)), so that M =
(

1 3
−2 0

0
0

0 0 2

)
(the graph
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Figure 4. Weighted graphs corresponding to M1, M2, and M ′

corresponding to M is just the disjoint union of the graphs for M1 and M2). Let

M ′ =
(

1 3
−2 0

1
0

0 −1 2

)
, with corresponding graph in Figure 4(c). The M ′-loop

(v1
1 , v

1
2 , v

2
1 , v

1
1) has itinerary (1, 1, 2, 1) and nonredundant itinerary (1, 1, 2).

Let S(M ′) be the set of all infinite M ′-paths. Define (ΓM ′ , σM ′) to be the sofic
shift given by the restriction of (Σ+

2 , σ) to ψ(S(M ′)).
We can make similar definitions for (ΓM , σM ), but it is contained entirely in

the set {(1, 1, 1, . . . )} ∪ {(2, 2, 2, . . . )} and is not very interesting. By Remark 3.16,
(ΓM ′ , σM ′) contains (ΓM , σM ), and possibly much more as well. We wish to ob-
tain conditions on the characteristic polynomials of M and M ′ guaranteeing that
(ΓM ′ , σM ′) will have positive topological entropy. The following lemma will be a
key to our analysis.

Lemma 3.18. Let x be a vertex of M ′, i.e., an element of {v1
1 , . . . , v

1
n,

v2
1 , . . . , v

2
m}, and let l be a positive integer. Let λ = (λ0, . . . , λl) and µ = (µ0, . . . , µl)

be M ′-loops at x of length l. If ψ̄(λ) 6= ψ̄(µ), then the lth power of (ΓM ′ , σM ′) fac-
tors onto the full 2-shift. Thus htop(σM ′) ≥ log 2

l .

Proof. Define a map φ from ΓM ′ to Σ+
2 as follows. If τ = (τ0, τ1, . . . ) (τi ∈ {1, 2} for

all i) is an element of ΓM ′ , let φ(τ) = (τ0, τl, τ2l, . . . ). Clearly φ◦σl
M ′ = σ ◦φ. Since

ΓM ′ contains the subshift generated by the concatenations of ψ̄(λ) and ψ̄(µ), and
ψ̄(λ) 6= ψ̄(µ), φ is surjective. Therefore, since htop(σ) = log 2, htop(σM ′) ≥ log 2

l .

Thus we want to determine whether there exist M ′-loops of the same length at
the same vertex with different nonredundant itineraries.

Definition 3.19. Let P (X) ∈ Z[X] be a polynomial of degree p, and b the multi-
plicity of zero as a root of P (X). Define the polynomial P̄ (X) of degree n− b to be
P (X)/Xb. (For example, if P (X) = X3 + 2X, then P̄ (X) = X2 + 2, and if Q(X)
is a power of X, then Q̄(X) = 1.)

Proposition 3.20. C̄M (X) =
∏

Wi
C̄MWi

(X), where Wi runs over all M -nontrivial
M -communicating classes.

Proof. This follows from Lemma 3.14 and Proposition 3.15.

Remark 3.21. If γ = (γ0, . . . , γr) is an M ′-path and λ = (λ0, . . . , λs) is an M ′-loop
with λ0 = λs = γi for some i, 0 ≤ i ≤ r, then we can link λ with γ at γi to produce
a new M ′-path of length r+ s from γ0 to γr (namely (γ0, . . . , γi = λ0, λ1, . . . , λs =
γi, γi+1, . . . , γr)). In particular, if γ and λ are both M ′-loops at λ0, we can link γ
and λ at γ0 to produce a new M ′-loop at λ0.
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Remark 3.22. Let A be a p × p matrix. We call an A-loop minimal if it does not
contain any proper subloops. A minimal A-loop λ must have length less than or
equal to p (since there are only p different vertices, if the length of λ is greater than
p there must be vertices λi = λj with i < j < l(λ), and (λi, . . . , λj) is a proper
subloop). Any A-loop is made up of linked minimal A-loops. In particular, any
A-loop at a vertex vi contains a (not necessarily proper) subloop at vi of length
less than or equal to p.

Let d = max(dimV1,dimV2) = max(n1, n2).

Theorem 3.23. If C̄M (X) is not a factor of C̄M ′(X), then there exists a posi-
tive integer k ≤ (n1 + n2)d such that σk

M ′ factors onto the full two-shift. Thus
htop(σM ′) ≥ log 2

k .

Proof. We will show that there is a new M ′-loop λ (i.e., λ is not an M -loop) at a
vertex that also has an “old” M -loop µ through it, and, after a little more work,
apply Lemma 3.18.

Assume that there is no suchM ′-loop λ, i.e., that no newM ′-loop passes through
a vertex that has an M -loop through it. In other words, then, all of the new M ′-
loops pass through only vertices that were in M -trivial M -communicating classes.
Therefore each M -nontrivial M -communicating class Wi is also an M ′-nontrivial
M ′-communicating class. Since there are no new M ′-loops involving vertices in Wi,
we have that CMWi

(X) = CM ′
Wi

(X), by Corollary 3.6. But then Proposition 3.20
implies that C̄M (X) divides C̄M ′(X), contrary to hypothesis.

So let λ be a new M ′-loop at x, and µ an M -loop (which by Remark 3.16 is also
an M ′-loop) at x. We may assume that l(λ) ≤ n1 + n2 (Remark 3.22). Also, since
M = M1 ⊕M2, µ is actually either an M1-loop or an M2-loop. Thus we can also
assume that l(µ) ≤ d. Let k = LCM(l(λ), l(µ)) ≤ l(λ)l(µ) ≤ (n1 + n2)d. Then by
linking λ with itself k

l(λ) times and µ with itself k
l(µ) times, we can produce new

M ′-loops at x, λ0 and µ0, with l(λ0) = l(µ0) = k. (For example, if λ = (v1
1 , v

2
1 , v

1
1)

and µ = (v1
1 , v

1
1), then k = 2, λ0 = λ, and µ0 = (v1

1 , v
1
1 , v

1
1).)

Now, since λ is an M ′-loop but not an M -loop, and all the edges gained passing
from M to M ′ link vertices in V1 to vertices in V2 or vice versa, ψ̄(λ) contains
both 1’s and 2’s, and the same is true of ψ̄(λ0). Similarly, since µ and µ0 are
M -loops, and M has no edges between vertices in V1 and vertices in V2, ψ̄(µ0)
contains either only 1’s or only 2’s. In particular, ψ̄(λ0) 6= ψ̄(µ0), and we can apply
Lemma 3.18.

Thus if we lose a nonzero eigenvalue when we pass from M to M ′, the shift
(ΓM ′ , σM ′) must have positive entropy. However, this is not necessarily true if we
gain a nonzero eigenvalue, as the following example shows.

Example 3.24. Let M ′ =
(

0 2 −1
1
1

0 0
0 0

)
, with corresponding graph in Figure 5.

Then C̄M (X) = 1, while C̄M ′(X) = X2 − 1. However, any M ′-loop λ at v1
1 must

have length 2l for some l and ψ̄(λ) = (1, 2)l. Similarly, any M ′-loop µ at v2
i

(i = 1, 2) must have length 2l0 and ψ̄(µ) = (2, 1)l0 . Thus

(ΓM ′ , σM ′) ⊂ {(1, 2, 1, 2, . . . )} ∪ {(2, 1, 2, 1, . . . )}

and therefore has zero topological entropy.
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Figure 5. Graph corresponding to M ′

The problem in this example is that every M ′-loop through a given vertex has
the same nonredundant itinerary. It turns out that the characteristic polynomial
of such a matrix must have a certain form. So if C̄M (X) divides C̄M ′(X) but the
polynomial C̄M ′(X)/C̄M (X) does not have that form, we still get a shift of positive
topological entropy. To make this precise, we need the following definition.

Definition 3.25. A polynomial P (X) ∈ Z[X] is cyclic if it is also a polynomial
in a higher power of X, i.e., if there exist an integer k > 1 and a polynomial Q
such that P (X) = Q(Xk). (Thus X4 +X2 + 1 = (X2)2 + (X2) + 1 is cyclic, while
X2 +X is not.)

Definition 3.26. Define a function B : N→ R by

B(k) =
(k + 1)2

4
(
(2 + k)(k + 1)2

8
)log2

(k+1)2

4 .

As before, let d = max(dimV1,dimV2) = max(n1, n2). Let b be the multiplicity
of zero as a root of CM (X).

Theorem 3.27. If C̄M (X) divides C̄M ′(X) but the polynomial
C̄M ′(X)/C̄M (X) is not a product of cyclic polynomials, then there exists an in-
teger k ≤ max((n1 + n2)d,B(b)) such that σk

M ′ factors onto the full two-shift.

Remark 3.28. The part of the estimate for k involving b is rather crude, as we shall
see. For small b we can get better estimates by inspection. If b = 2, then we can
replace the second term of the maximum by 2. If b = 3, we can replace it by 6.
And if b = 4, we can replace it by 12.

Proof. Again, we will try to apply Lemma 3.18. If there is a new M ′-loop at the
same vertex as an oldM -loop, then we may proceed as in the proof of Theorem 3.23,
and we are done. So assume that all new M ′-loops contain only vertices that were
M -trivial. Then we will see that the hypothesis of the theorem implies that at
some vertex there are two new M ′-loops of relatively prime length. It is then easy
to see that we can produce from these two M ′-loops that satisfy the hypotheses of
Lemma 3.18, completing the proof.

Let {Wj} be the set of all M ′-nontrivial M ′-communicating classes containing
vertices that were M -trivial (i.e, the vertices in {Wj} are all of those contained in
the new M ′-loops). Then the hypothesis of the lemma implies that for some Wj ,
the polynomial C̄M ′

Wj
(X) is noncyclic.

Lemma 3.29. Let A be a p × p matrix (with p ≥ 2) such that for any pair of
vertices there is an A-loop joining them, and such that C̄A(X) is noncyclic. Then
at some vertex there are two A-loops of relatively prime length, with the length of
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one less than or equal to (p+1)2

4 and the length of the other less than or equal to

( (2+p)(p+1)2

8 )log2
(p+1)2

4 .

We will postpone the proof of this lemma.
Since Wj consists of vertices that were M -trivial, by Lemma 3.14 and Propo-

sition 3.15 Wj contains at most b vertices. Thus the preceding lemma tells us
that there exist new M ′-loops λ and µ at some vertex of Wj with l(λ) ≤ (b+1)2

4 ,

l(µ) ≤ ( (2+b)(b+1)2

8 )log2
(b+1)2

4 , and GCD(l(λ), l(µ)) = 1.
Let λ′ be the M ′-loop obtained by linking λ with itself l(µ) times, and µ′ that

obtained by linking µ with itself l(λ) times. Observe that

l(λ′) = l(µ′) ≤ (b+ 1)2

4

(
(2 + b)(b+ 1)2

8

)log2
(b+1)2

4

= B(b).

We wish to apply Lemma 3.18, so we need to show that ψ̄(λ′) 6= ψ̄(µ′).
Assume without loss of generality that π(λ0) = 1. Since µ is a new M ′-loop,

it must contain vertices from both V1 and V2. Thus there is a j, 0 ≤ j < l(µ),
such that π(µj) = 2. Now, λ′l(λ)t = λ0 for t = 0, . . . , l(µ), and µ′l(µ)s+j = µj for
s = 0, . . . , l(λ)−1. Since l(λ) and l(µ) are relatively prime, the Chinese Remainder
Theorem ([3, Th. 24]) tells us that there exists a q, 0 ≤ q < l(λ)l(µ), such that
q ≡ 0 (mod l(λ)) and q ≡ j (mod l(µ)). In other words, q = l(λ)t for some t,
0 ≤ t < l(µ), and q = l(µ)s+ j for some s, 0 ≤ s < l(λ). Thus π(λ′q) = π(λ0) = 1
and π(µ′q) = π(µj) = 2. So ψ̄(λ′) 6= ψ̄(µ′), completing the proof.

We still must prove Lemma 3.29.

Proof of Lemma 3.29. We will need the following lemmas.

Lemma 3.30. Let A be as in the statement of Lemma 3.29. Then there is no
integer t > 1 such that t divides the length of every A-loop.

Proof. Assume that there is a t > 1 such that the length of every A-loop is divisible
by t. Then tr(Aj) = 0 for j 6≡ 0 (mod t), by Corollary 3.5. Thus Newton’s formula
([4, §92]) tells us that CA(X) has the form XsP (Xt) for some s ≥ 0 and some
polynomial P with nonzero constant term. But then C̄A(X) = P (Xt), contrary to
hypothesis.

So for any integer t > 1, there exists a minimal A-loop whose length is not
divisible by t (otherwise, since every A-loop is made up of minimal A-loops linked
together (Remark 3.22), every A-loop would have length divisible by t).

Lemma 3.31. There is an A-loop λ of length less than or equal to (p+1)2

4 containing
all p vertices.

Proof. For each i 6= j, let µij be the shortest A-path from vi to vj . Let µ be a
µij of maximal length, which length we will denote by k. Let q be the number of
vertices that µ misses. Then k = p− q − 1 (since µ is the shortest A-path between
the vertices that it joins, it contains no A-loops, and hence hits each of the p − q
vertices that it contains exactly once). Join to µ the shortest A-path starting at
the end of µ and ending at the first of the q vertices missed by µ. From the end of
this new A-path join the shortest A-path to the second vertex missed by µ, then
the third, and so on, until we have an A-path from the initial vertex of µ to the last
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of the vertices missed by µ. This A-path contains all p vertices. Finally, join the
shortest A-path from the end back to the initial vertex of µ, and call the resulting
A-loop λ.

We must estimate the length of λ. We started with µ, and added to it q + 1
A-paths, each of length less than or equal to k. Thus

l(λ) ≤ l(µ) + (q + 1)k = (q + 2)k = (q + 2)(p− q − 1).

The function f(x) = (x+ 2)(p− x− 1) has its absolute maximum at x = p−3
2 , and

f(p−3
2 ) = (p+1)2

4 . Thus l(λ) ≤ (p+1)2

4 .

Let λ be such an A-loop at some vertex x. Since λ contains every vertex, we can
link any other A-loop with it. We will produce a new A-loop µ at x of length less

than or equal to
(

(2+p)(p+1)2

8

)log2
(p+1)2

4
such that GCD(l(λ), l(µ)) = 1.

Let l(λ) = pd1
1 . . . pdk

k be the prime factorization of l(λ). For each i, there is an
A-loop νi of length qi such that pi 6 |qi and pj |qi for every j 6= i (take any minimal
A-loop whose length is not divisible by pi and link it with itself

∏
j 6=i pj times).

We will define µ inductively. Let µ0 = λ. Given µs−1, construct µs by linking
(
∏

1≤i<s(p
di
i + qi))(

∏
k≥j>s p

dj

j ) copies of νs to µs−1. Let µ = µk.

By construction, l(µ) =
∏k

i=1(p
di
i + qi), which is not divisible by pj for any j (to

see this, reduce each multiplicand modulo pj before multiplying). Thus l(µ) and
l(λ) have no factors in common, i.e., are relatively prime.

Finally, we must estimate the length l(µ). Clearly pdi
i ≤ l(λ) ≤ (p+1)2

4 for each

i. Also, l(λ) cannot have more than log2 l(λ) prime factors, so k ≤ log2
(p+1)2

4 .
Finally, each νi is a minimal (hence of length less than or equal to p) A-loop linked
with itself at most l(λ)

2 times, so l(νi) = qi ≤ p · (p+1)2

8 = p(p+1)2

8 . Thus

l(µ) =
k∏

i=1

(pdi
i + qi) ≤

(
(p+ 1)2

4
+
p(p+ 1)2

8

)log2
(p+1)2

4

=
(

(2 + p)(p+ 1)2

8

)log2
(p+1)2

4

.

The converse to Theorems 3.23 and 3.27 is not true. The sofic shift associated
to the matrix M ′ =

( 1 1
1 1

0 1
0 2

−2 4
−4 2

1 1
1 1

)
has positive entropy, but one can check that in

this case C̄M (X) = C̄M ′(X).

Remark 3.32. It is easy to generalize the results in this section to matrices producing
sofic shifts on three or more symbols. For details, see [12, §3.3].

4. Applications. Our first application of the results in the previous section is in
the case when we begin with an adjacency matrix M ′ for a sofic shift. We can
test whether the shift has positive entropy by computing C̄M ′(X), C̄M1(X), and
C̄M2(X) (where Mi is the matrix for the restriction of the shift to the vertices
labelled i) and applying Theorems 3.23 and 3.27.

A second application is to the case where we have two topological spaces X1

and X2 and a map f from their topological sum to itself. We produce symbolic
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Figure 6. Graphs corresponding to M ′ and N ′

dynamics (a subshift of Σ+
2 ) from f by associating to a point x its itinerary, i.e.,

the sequence of 1’s and 2’s reflecting the location of each iterate of x (we will
make this more formal shortly). If M ′ is the matrix associated to a map on some
dimension of homology induced by f , and M1 and M2 the obvious restrictions, then
we would like to claim that the symbolic dynamics induced by f contains the sofic
shift (ΓM ′ , σM ′) associated to M ′. Unfortunately, this is not true, as the following
example shows.

Example 4.1. Let X1 = S1, a single copy of S1, and X2 = S2 ∨ S3, a wedge of
two circles. Define the map f by sending S1 to S3 via an orientation-preserving
homeomorphism, S2 to S1 via an orientation-preserving homeomorphism, and S3

to a point ∗ of S3. Then the only possible itineraries are (1, 2, 2, . . . ) and (2, 2, . . . ).
Let v1

1 be a generator for H1(X1), v2
1 for H1(S2), and v2

2 for H1(S3). With
these basis elements, the matrix for the induced map on homology is f1 = M ′ =(

0 1 0
0
1

0 0
0 0

)
, with corresponding graph in Figure 6(a). Then the sofic shift (ΓM ′ , σM ′)

is trivial (there are no M ′-paths of length greater than two).
But now let us choose a different basis. Let ṽ1

1 = v1
1 , ṽ2

1 = v2
1 , and ṽ2

2 = v2
1 + v2

2 .
Then the matrix N ′ for f1 with this new basis is

(
0 1 1
−1
1

0 0
0 0

)
, with corresponding

graph in Figure 6(b). The associated sofic shift (ΓN ′ , σN ′) is nontrivial, and so is
not a subshift of the symbolic dynamics associated to f .

Remark 4.2. This example seems to suggest that if we just pick the right basis,
then the sofic shift associated to the homology matrix will be contained in the
symbolic dynamics associated to the map. This is in fact true for simple spaces
like the wedges of spheres in the example, but in general things seem to be more
complicated.

A third application, and the original motivation for this paper, arises in using
the discrete Conley index to detect symbolic dynamics in decompositions of isolated
invariant sets.

The discrete Conley index is a powerful topological tool for studying isolated
invariant sets of a given map f . Roughly speaking, it assigns to each such set a
pointed space P and a base-point preserving map fP , which is defined up to an
equivalence relation. By studying the simpler map fP we can draw conclusions
about the original map f . Our discussion of the discrete Conley index is based on
that in [6], where one can find more details and proofs of the theorems below. Let
U be an open subset of a locally compact metric space X and suppose f : U → X
is a continuous map.
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Definition 4.3. For any set N ⊂ U we define InvN , the maximal invariant subset,
to be the set of x ∈ N such that there exists an orbit {xn}n∈Z ⊂ N with x0 = x
and f(xn) = xn+1 for all n. A compact set N is called an isolating neighborhood if
InvN ⊂ IntN . A set S is called an isolated invariant set if there exists an isolating
neighborhood N with S = InvN . If N is an isolating neighborhood, we define the
exit set of N to be

N− := {x ∈ N : f(x) /∈ IntN}.

Definition 4.4. Let S be an isolated invariant set and suppose L ⊂ N is a compact
pair contained in the interior of the domain of f . The pair (N,L) is called a filtration
pair for S provided N and L are each the closures of their interiors and

1. Cl(N \ L) is an isolating neighborhood of S,
2. L is a neighborhood of N− in N , and
3. f(L) ∩ Cl(N \ L) = ∅.

Again, see [6] for proofs of the following theorems.

Theorem 4.5. Let S be an isolated invariant set. For every neighborhood V of
S, there exists a filtration pair (N,L) for S with L ⊂ N ⊂ V . Moreover there is
a neighborhood of f in the C0 topology such that for any f̃ in this neighborhood,
S̃ = Inv(N \ L, f̃) is an isolated invariant set and (N,L) is a filtration pair for S̃.

Theorem 4.6. Let P = (N,L) be a filtration pair for f and let NL denote the
quotient space N/L where the collapsed set L is denoted [L] and is taken as the
base-point. Then f induces a continuous base-point preserving map fP : NL → NL

with the property [L] ⊂ Int f−1
P ([L]).

Remark 4.7. Observe that we can identify the set Inv(NL \ {[L]}, fP ) with S =
Inv(Cl(N\L), f).

Given an isolated invariant set S, Theorem 4.5 tells us that we can find a filtration
pair for it. Our choice of filtration pairs is not unique, even up to homotopy
equivalence. Any two filtration pairs for S will, however, be shift equivalent (see
[6] for definitions and proofs), which allows us to make the following definition.

Let S be an isolated invariant set, and consider the homotopy class of base-point
preserving maps on NL with fP as a representative. We denote this collection
hP (S). We may now define the Conley index.

Definition 4.8. Let S be an isolated invariant set for a continuous map f . Then
define the discrete homotopy Conley index of S, h(S), to be the shift equivalence
class of hP (S), where P = (N,L) is a filtration pair for S.

Assume that we have a continuous map of a locally compact metric space, f :
X → X, and an isolating neighborhood N . If N is the disjoint union of two other
isolating neighborhoods N1 and N2, then we can associate a symbolic dynamical
system to the map f restricted to InvN . We define (see [2]) a continuous map
Θ : InvN → {1, 2} by setting

Θ(x) =

{
1 if x ∈ N1,
2 if x ∈ N2.

We relate the dynamics of f on InvN to symbolic dynamics via the itinerary map
ρ : InvN → Σ+

2 defined by

ρ(x) = (Θ(x),Θ(f(x)),Θ(f2(x)), . . . ).
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It is clear that ρ is continuous and that σ ◦ ρ = ρ ◦ f .
Following [10] and [2], we can use the discrete Conley index to detect interesting

subshifts of the image shift ρ(InvN), by analyzing the homology maps induced by
fP . (In all of what follows, we will be considering singular homology with real
coefficients, so H∗(−) = H∗(−; R).)

Let (K,L) be a filtration pair for InvN , and define Ki to be K ∩Ni (i = 1, 2),
and similarly for Li, so that the pointed space KL = (K1)L1 ∨ (K2)L2 .

Definition 4.9. Assume that for some positive integer q, Hq(KL, [L]) is finite-
dimensional, and that dim(Hq((Ki)Li

, [Li])) ≥ 1 for i = 1, 2. Let the set of vectors
(vi

1, . . . , v
i
ni

) be a basis for Vi := Hq((Ki)Li , [Li]). Then

(v1
1 ⊕ 0, . . . , v1

n1
⊕ 0, 0⊕ v2

1 , . . . , 0⊕ v2
n2

)

is a basis for V := Hq(KL, [L]). Let M ′ =
(

M1 A12
A21 M2

)
be the matrix representa-

tion in this basis for (fP )q : Hq(KL, [L])→ Hq(KL, [L]), and let M =
(

M1 0
0 M2

)
.

Define the matrices Ai (i = 1, 2) by setting A1 =
(

M1 0
A21 0

)
and A2 =

(
0 A12
0 M2

)
.

Given a word ω = (ω0, ω1, . . . , ωk) ∈ {1, 2}k+1, define the matrix (A∗)ω by
setting

(A∗)ω := (Aωk
◦Aωk−1 ◦Aωk−2 ◦ · · · ◦Aω1 ◦Aω0).

For i = 1, 2, let ki be a nonnegative integer and ωi = (ωi
0, . . . , ω

i
ki

) an element
of {1, 2}ki+1. Also let α = (α0, α1, . . . ) be an element of {1, 2}l, where l is in
N∪ {+∞}. Define the sequence α(ω1, ω2) (which will be infinite if α is infinite) by
setting

α(ω1, ω2) := ((ωα0), (ωα1), (ωα2), . . . )

= (ωα0
0 , . . . , ωα0

kα0
, ωα1

0 , . . . , ωα1
kα1

, ωα2
0 , . . . ).

Thus the word α(ω1, ω2) is a concatenation of the words ω1 and ω2, combined in
the order specified by α.

The following theorem, which is essentially a corollary of [10, Th.4.2], is proven
in [2, §4], using a slightly different but equivalent version of the Conley index. See
also [13, Th. 4.13].

Theorem 4.10. Suppose that ω1 and ω2 are two words such that (A∗)α(ω1,ω2) is
non-nilpotent for every finite α. Then for any β = (β0, β1, . . . ) ∈ {1, 2}+∞ there
exists a point x ∈ S such that ρ(x) = β(ω1, ω2).

Remark 4.11. Since the map fP depends on the choice of filtration pair for InvN , so
do the characteristic polynomials CM (X) and CM ′(X). But since any two choices
lead to shift equivalent maps, C̄M (X) and C̄M ′(X) are independent of the choice
([8, Prop. 7.3.7], and thus so are the following theorems.

Definition 4.12. We say that M and M ′ satisfy Hypothesis H if
1. C̄M (X) does not divide C̄M ′(X), or
2. C̄M (X) divides C̄M ′(X) but the polynomial C̄M ′(X)/C̄M (X) is not a product

of cyclic polynomials.

Theorem 4.13 ([2, Thm. 1.1]). If M and M ′ satisfy Hypothesis H, then there
exists a positive integer d such that fd : S → S factors onto the full two-shift.
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A disadvantage of this result is that it does not specify the power d. Thus it does
not provide an estimate for the topological entropy of f . The following theorems
will, with some additional hypotheses, provide a bound on d. Also, the proof of
Theorem 4.13 is very algebraic. Our proofs may be more transparent to a dynamics
based as they are on the theory of symbolic dynamics and adjacency matrices. This
transparency allows us to generalize our results fairly easily.

On the other hand, the great advantage of Theorem 4.13 over our results is that
it does not require additional hypotheses (such as the spaces having dimension one
or the maps being cellular). Thus it can be applied in more general situations.

We would like to be able to claim that if there is an M ′-loop with reduced
itinerary ω ∈ {1, 2}k, then the matrix (A∗)ω is non-nilpotent, so that we could
combine the results of the previous section with Theorem 4.10. However, we cannot
make that claim in general, as the following example shows.

Example 4.14. Let M ′ =
(

M1 A12
A21 M2

)
=
( 1 −1

1 −1
1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

)
. Then for any word ω,

there is an M ′-loop with ω as its reduced itinerary. However, (A∗)ω is zero for any
word ω of length greater than one, and hence nilpotent for any ω.

The problem is that the weights of the various M ′-paths of a given length l can
cancel each other out, leaving (M ′)l with zero entries. This cannot happen if M ′

is nonnegative, of course.

Proposition 4.15. Assume that the matrix M ′ is nonnegative, and let ω be a
finite word. If there is an M ′-loop λ with ψ̄(λ) = ω, then the matrix (A∗)ω is
non-nilpotent.

Proof. For any positive integer b and any p, 1 ≤ p ≤ n1+n2, ((A∗)b
ω)pp =

∑
µ w(µ),

where the sum is taken over all M ′-loops µ at vp such that ψ̄(µ) = b · ω.
Thus, if λ0 = vp, then

((A∗)b
ω)pp = (w(λ))b +

∑
µ

w(µ),

where the sum is taken over all M ′-loops µ at the corresponding vertex vi(p)
j(p) such

that ψ̄(µ) = b · ω and µ is not equal to λ linked with itself b times (the vertex
corresponding to p is vi(p)

j(p), where i(p) = 1 if p ≤ n1 and 2 otherwise, and j(p) =
p− (1− i(p))n1).

Since M ′ is nonnegative, every M ′-loop has positive weight, so

((A∗)b
ω)pp ≥ (w(λ))b > 0

for every b. Thus (A∗)ω is non-nilpotent.

As before, let d = max(dimV1,dimV2) = max(n1, n2). Let b be the multiplicity
of zero as a root of CM (X).

Corollary 4.16. Assume that there exist bases for V1 and V2 such that the matrix
M ′ representing (fP )q with the induced basis on V1 ⊕ V2 is nonnegative. Assume
further that M and M ′ satisfy Hypothesis H. Then some power k ≤ max((n1 +
n2)d,B(b)) of the map f : S → S factors onto the full two-shift. Thus htop(f) ≥
log 2

k .

Proof. This follows from Theorems 4.10, 3.23, and 3.27, and Proposition 4.15.
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This approach also works if V1 and V2 both have dimension one.

Theorem 4.17. Assume that dimV1 = dimV2 = 1. If M and M ′ satisfy Hypoth-
esis H, then there exists a positive integer k ≤ 2 such that fk factors onto the full
two-shift.

Proof. Since V1 and V2 each have only one vertex, an M ′-path is uniquely deter-
mined by its itinerary. Thus if λ is an M ′-loop with ψ̄(λ) = ω, then (A∗)b

ω =
(w(λ)b), so (A∗)b

ω is non-zero.
Furthermore, in the case n1 = n2 = 1, all of the relevant loops in the proofs of

Theorems 3.23 and 3.27 may be assumed to have length one or two. Thus we may
proceed as in the proof of Corollary 4.16, with k ≤ 2.

Remark 4.18. The previous theorem can easily be proved directly by considering
matrices of the form

(
a b
c d

)
, with a, b, c and d real numbers. The difficulty in

higher dimensions comes from the fact that the space of p × p matrices is not a
domain for p > 1.

To apply the results of the previous section in other circumstances, we will take
a different approach from showing that (A∗)ω is non-nilpotent. We will see that,
under suitable hypotheses, we can verify directly that the sofic shift (ΓM ′ , σM ′)
associated to M ′ is a subshift of (ρ(S), σ|ρ(S)).

Theorem 4.19. For i = 1, 2, let (Ki)Li = Xi be a wedge of ni q-spheres, so
that Xi =

∨ni

j=1 Si,j. For each i and j, let v̄i
j be a generator for Hq(Si,j) = R,

and vi
j the element of Hq((Ki)Li

, [Li]) = Rni induced by v̄i
j under the inclusion

Si,j ↪→ Xi. Then the set {vi
j}

ni
j=1 is a basis for Vi = Hq((Ki)Li , [Li]). Let M and

M ′ be the matrices for the maps induced by fP on Hq(KL, [L]) = Rn1+n2 with these
as basis elements. Then the sofic shift (ΓM ′ , σM ′) associated to M ′ is a subshift of
(ρ(S), σ|ρ(S)), so htop(f) ≥ htop(σ|ρ(S)) ≥ htop(σM ′).

Proof. Define a continuous map θ′ : KL \ [L]→ {1, 2} by setting θ′([x]) = i, where
[x] ∈ (Ki)Li

.
Then define a map ρ′ : Inv(KL, fP ) \ {[L]} → Σ+

2 by setting

ρ′([x]) = (θ′([x]), θ′(fP ([x])), θ′(fP
2([x])), . . . ).

It is clear that under the identification [x] ←→ x of Inv(NL \ {[L]}, fP ) and
Inv(Cl(K\L), f) = S, ρ(x) = ρ′([x]). (See Remark 4.7.)

For any i0, j0, i1, j1 (where ik = 1, 2 and 1 ≤ jk ≤ nik
, k = 0, 1), the map fP on

KL = X1 ∨X2 induces a map f i1,j1
i0,j0

: Si1,j1 → Si0,j0 (defined by inclusion of Si1,j1 ,
followed by fP , followed by projection to Si0,j0). Then the ((1 − i0)n1 + j0, (1 −
i0)n1 + j1)-entry of M ′ is equal to ±degree(f i1,j1

i0,j0
) (see [5, §XI.4]). (We could make

a convention to settle the question of the sign, if we cared, which we do not.) In
particular, if this entry is not equal to zero, then degree(f i1,j1

i0,j0
) 6= 0, so f i1,j1

i0,j0
is a

surjection ([5, Lemma XI.4.2]).
Let γ = (γ0, γ1, . . . ) be an infinite M ′-path. If γk = vi

j , define b(γk) to be

(i, j). Then the map f
b(γk+1)
b(γk) : Sb(γk+1) → Sb(γk) is surjective for any k ≥ 0, by

the definition of M ′-path. Therefore the set
⋂∞

k=0 fP
−k(Sb(γk)) is nonempty. We

would like to say that for any [x] in that set, ρ′([x]) = ψ(γ), completing the proof,
but that is not true, since the base point [L] is in the set, and ρ′([L]) is not even
defined.
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So we need to be a little more careful. Recall from Theorem 4.6 that there is
an open neighborhood U0 of [L] in KL such that fP (U0) = [L]. For each Si,j , let
S̄i,j = Si,j \ U0. If f i1,j1

i0,j0
is surjective, then in fact the image of S̄i1,j1 under f i1,j1

i0,j0

is all of Si0,j0 . So if γ is an infinite M ′-path, the set Sγ :=
⋂∞

k=0 fP
−k(S̄b(γk))

is nonempty. Clearly for any [x] in Sγ , ρ′([x]) = ψ(γ). Since ρ(x) = ρ′([x]), the
theorem is proved.

Remark 4.20. In order for Theorem 4.19 to work, we must take as the basis the
set of generators for the qth homology of each q-sphere. The theorem’s conclusion
does not necessarily hold for other bases, as Example 4.1 shows.

In practice, we would probably not use the previous theorem (instead, we would
assign each sphere its own label and study the resulting sofic shift on n1 + n2

symbols). It serves as a model for using the results from the previous section to
bound the entropy of f , however, and as a simple example of the method of proof
for the next theorem, which applies to the case that KL is a finite cell complex and
fP a cellular map. Verifying the hypotheses on the characteristic polynomials is a
little harder, however. We will need the following definitions.

Definition 4.21 ([7, Ch. 5]). Let g : E → E be a map of a compact ENR. The
homology zeta function of g, Zg, is the rational function defined by setting

Zg(t) =
d∏

k=0

det(I − gkt)(−1)k+1
,

where gk : Hk(E)→ Hk(E) is induced by g, and d satisfies Hk(E) = 0 for k > d.

Theorem 4.22. Assume that KL is connected, that D is a finite cell decomposition
for KL, and that fP is cellular with respect to D. Let b′ be the maximum number of
cells in any one dimension. If the rational fraction ZfP

( 1
X )

ZfP1
( 1

X )ZfP2
( 1

X )
does not have

the form c(X − 1)Xp P (X)
Q(X) , where c is a constant, p is an integer, and P and Q are

products of cyclic polynomials, then there exists a k, with k ≤ max(b′(b′−1), B(b′)),
such that fk : S → S factors onto the full two-shift.

Proof. For each q ≥ 0, let D(q) be the q-skeleton of D, and let fP
(q) be the map

induced by fP on D(q)/D(q−1). Let Cq = Hq(D(q)/D(q−1)). Then, with the appro-
priate differential, C∗ is a chain complex with H∗(C∗) = H∗(KL) (see [1, §IV.10]).
Let τq : Cq → Cq be the chain map given by τq = (fP

(q))q : Hq(D(q), D(q−1)) →
Hq(D(q), D(q−1)). Then the induced map τ∗ : H∗(C∗) → H∗(C∗) is the same as
(fP )∗ : H∗(KL)→ H∗(KL) (see [7, Ch. 4]). We have that

∏
q ZfP

(q) = ZfP
(see [7,

Ch. 5]). Thus ∏
q

det(I − τqt)(−1)q+1
=
∏
q

det(I − (fP )qt)(−1)q+1
.

We can make a similar construction for the induced cell structure Di on (Ki)Li
.

If τ (i)
q = (fPi

(q))q : Hq(D
(q)
i , D

(q−1)
i ) → Hq(D

(q)
i , D

(q−1)
i ), then, as above, we have

that ∏
q

det(I − τ (i)
q t)(−1)q+1

=
∏
q

det(I − (fPi
)qt)(−1)q+1

= ZfPi
(t).
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We wish to show that τqand τ (1)
q ⊕ τ (2)

q satisfy Hypothesis H for some q > 0.
Observe that

ZfP
(t) = (1− t)−1

∏
q>0

det(I − τqt)(−1)q+1

and

ZfP1
(t)ZfP2

(t) = (1− t)−2
∏
q>0

(det(I − τ (1)
q t) det(I − τ (2)

q t))(−1)q+1
.

Therefore ZfP
( 1

X )

ZfP1
( 1

X )ZfP2
( 1

X )
= c(X − 1)Xp

∏
q>0

(
C̄τq (X)

C̄
τ
(1)
q

(X)C̄
τ
(2)
q

(X)

)(−1)q+1

, where c

is a constant and p is an integer. Thus by hypothesis τq and τ (1)
q ⊕ τ (2)

q must satisfy
Hypothesis H for some q > 0.

Now observe that D(q)
i /D

(q−1)
i is a wedge of q-spheres

∨ni

j=1Si,j , one correspond-

ing to each q-cell Ei,j ofDi, andD(q)/D(q−1) = (D(q)
1 /D

(q−1)
1 )∨(D(q)

2 /D
(q−1)
2 ) (note

that n1 +n2 ≤ b′). Thus we may proceed as in the proof of Theorem 4.19. For any
infinite τ -path γ, the set

⋂∞
k=0(fP

(q))−k(Sb(γk)) is nonempty. Therefore, the set
Eγ :=

⋂∞
k=0 fP

−k(Eb(γk)) is also nonempty, and, in fact, Eγ\{[L]} is nonempty as
well (using the fact that [L] is a superattractor, as in the proof of Theorem 4.19).
Since ρ′([x]) = ψ(γ) for any [x] ∈ Eγ\{[L]}, the theorem is proved.

Remark 4.23. As it was easy to generalize the results of the previous section to
three or more pieces (Remark 3.32), so it is with the results in this section. Again,
see [12, §3.3].

To the best of my knowledge, it is an open question whether the bounds on the en-
tropy of f given in Theorem 4.19 always apply when the conditions of Theorem 4.13
are met, or whether we actually need the additional hypotheses of Theorem 4.19.
An example showing that the latter case is the correct one should shed light on the
relationship between homology matrices and adjacency matrices for sofic shifts.
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