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Abstract. We discuss topological definitions of expansivity, shad-
owing, and chain recurrence for homeomorphisms. They generalize
the usual definitions for metric spaces. We prove various theorems
about topologically Anosov homeomorphisms (maps that are ex-
pansive and have the shadowing property) on noncompact and
non-metrizable spaces that generalize theorems for such homeo-
morphisms on compact metric spaces. The main result is a gen-
eralization of Smale’s spectral decomposition theorem to topologi-
cally Anosov homeomorphisms on first countable, locally compact,
paracompact, Hausdorff spaces.

1. Introduction

The goal of this paper is to extend the following result, Smale’s
spectral decomposition theorem applied to Anosov diffeomorphisms of
compact manifolds, to more general topological spaces.

Theorem 1 ([15]). Let M be a compact manifold and f : M → M be
an Anosov diffeomorphism. Then the non-wandering set Ω(f) can be
written as a finite union of disjoint closed invariant sets on which f is
topologically transitive.

Recall that a diffeomorphism is Anosov if it has a hyperbolic struc-
ture on the entire manifold and that every Anosov diffeomorphism is
expansive and has the shadowing property (see, e.g., [14, Sect. 9.2]).
Theorem 1 has been extended to homeomorphisms on compact metric
spaces:

Theorem 2 ([1, Theorem 11.13], [2, Theorem 3.4.4]). Let X be a
compact metric space and f : X → X be an expansive homeomorphism
with the shadowing property. Then Ω(f) can be written as a finite union
of disjoint closed invariant sets on which f is topologically transitive.
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Yang extended Theorem 2 to noncompact metric spaces ([18, Theo-
rem 4]), with the additional (strong) requirement that the chain recur-
rent set be compact.

It is well known that some dynamical properties of homeomorphisms
on compact spaces (i.e., properties that are conjugacy invariant), may
not be dynamical properties on noncompact spaces. For example, a
dynamical system on a noncompact metric space may be expansive
or have the shadowing property with respect to one metric, but not
with respect to another metric that induces the same topology (see
Examples 6 and 7). Of course, it is preferable to have a theory that
is independent of any change of (compatible) metric. In this article
we give topological definitions of expansiveness and shadowing that
are equivalent to the usual metric definitions for homeomorphisms on
compact metric spaces and are dynamical properties for any metric
space. Moreover, these definitions apply to non-metrizable spaces as
well. For related work see [3, 6, 7, 8, 11, 12, 13].

Then we extend the spectral decomposition theorem to dynamical
systems on spaces that are not necessarily metrizable and not neces-
sarily compact. The only concession is that in the noncompact case,
the collection of basic sets in the decomposition need not be finite.

Theorem 3. Let X be a first countable, locally compact, paracompact,
Hausdorff space and f : X → X an expansive homeomorphism with the
shadowing property. Then Ω(f) can be written as a union of disjoint
closed invariant sets on which f is topologically transitive. If X is
compact, then this decomposition is finite.

Remark 4. Every metric space is first countable, paracompact, and
Hausdorff ([16, §5]), so in particular the preceding theorem applies to
any locally compact metric space. It also applies to non-metrizable
spaces such as the unit square with the lexicographic ordering.

The paper is organized as follows. We discuss definitions and pre-
liminaries in the next section. In Section 3, we show that topologically
Anosov homeomorphisms have a local product structure, and obtain
topological stability as a consequence. In Section 4 we investigate the
properties of the non-wandering and chain recurrent sets, and prove
our main result, Theorem 3. Finally, we discuss the relationships be-
tween the topological definitions of expansiveness and shadowing and
the usual metric definitions.
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2. Preliminaries

The following are the standard definitions for expansiveness and
shadowing, which we will refer to as metric expansiveness and met-
ric shadowing.

Definition 5. Let (X, d) be a metric space and f : X → X be a
homeomorphism.

(1) f is metric expansive if there is an e > 0 such that for any
distinct x, y ∈ X, there exists n ∈ Z such that d(fn(x), fn(y)) >
e. The number e is called an expansive constant.

(2) For δ > 0, a δ-chain is a sequence {x0, x1, . . . , xn} (n ≥ 1) such
that d(f(xi−1), xi) < δ for i = 1, . . . , n. A δ-pseudo-orbit is a
bi-infinite δ-chain.

(3) f has the metric shadowing property if for every ε > 0, there
exists a δ > 0 such that every δ-pseudo-orbit {xi} is ε-traced
by a point y; that is, d(f i(y), xi) < ε for all i.

(4) A point x is metric chain-recurrent if for any δ > 0, there is a
δ-chain from x to itself.

These definitions clearly require that X be a metric space. Further-
more, as we see in the following two examples, if X is noncompact,
these properties depend on the choice of metric; a homeomorphism
that is metric expansive for d may not be for d′, even if d and d′ induce
the same topology. Thus on noncompact spaces, these properties are
not invariant under topological conjugacy. In addition, if f has these
properties, its iterates may not ([4, Example 1], [13, Example 9]).

Example 6. Let T : R2 → R2 be the linear automorphism induced by
the matrix (

2 0
0 1

2

)
,

and consider the stereographic projection P : S2 − {(0, 0, 1)} → R2

defined by f(x, y, z) = (x,y)
(1−z) . Then T is not expansive if R2 has the

metric induced by P , but T is expansive when R2 has the usual metric.
Moreover, both metrics induce the same topology on R2.

Example 7. Let X ⊂ R2 be the subset
⋃
n∈ZXn = {n} × [0, 2−|n|],

with the metric inherited from R2, and define f : X → X by

f(n, y) =

{
(n+ 1, 2y), if n < 0,

(n+ 1, 1
2
y), if n ≥ 0.

Choose δ > 0. Since diam(Xn) < δ for n with |n| > n0 = d1
δ
e,

the uniform continuity of f and f−1 on the compact set X−n0 ∪ · · · ∪
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Xn0 shows that f has the metric shadowing property. However, f is
topologically conjugate to the map on the space

⋃
n∈Z ({n} × [0, 1])

given by translation on the first coordinate and identity on the second,
which clearly does not have the metric shadowing property.

To address these issues, we make purely topological definitions for
these notions. These definitions are equivalent to the metric ones in
the case that X is a compact metric space; we discuss the relationships
among the definitions in general in Section 5.

Recently, the third and fourth authors studied two topological gener-
alizations of positive expansivity ([13]). For a given dynamical system
f : X → X, they use the product map F ≡ f ×f on X×X and neigh-
borhoods of the diagonal ∆X = {(x, x) : x ∈ X} to extend the notion
of positive expansivity. The idea is that x is close to y in X if and only
if the point (x, y) is close to the diagonal ∆X in X ×X. Thus, instead
of requiring that d(x, y) be less than ε, we can require that (x, y) be
in a given neighborhood of ∆X . This approach is useful for extend-
ing dynamical properties from the compact setting to the noncompact
setting. (In other words, the approach involves a uniform structure on
the space X; the neighborhoods of the diagonal are entourages. Any
Tychonoff space has a uniform structure.)

We make the standing assumption that all topological spaces are
first countable, locally compact, paracompact, and Hausdorff and that
all maps are homeomorphisms although some of the results apply more
generally. (Every locally compact, Hausdorff space is Tychonoff, and
so has a uniform structure.) To avoid confusion, we denote subsets of
the product space X × X by A, M , U , etc., and subsets of the base
space X by Ȧ, Ṁ , U̇ , etc.

Let U be a neighborhood of ∆X , and let U [x] = {y ∈ X : (x, y) ∈ U}
be the cross section of U at x ∈ X. For any point x ∈ X and any
neighborhood Ġ of x, we can find a neighborhood U of ∆X such that
U [x] ⊂ Ġ. A set M ⊂ X × X is proper if for any compact subset S,
the set M [S] =

⋃
x∈SM [x] is compact. M is symmetric if M is equal

to its transpose, MT = {(y, x) : (x, y) ∈ M}. Note that if M is a
neighborhood of ∆X , then M ∩MT is a symmetric neighborhood of
∆X ; thus we can often work with symmetric neighborhoods without
loss of generality.

Let

Un ={(x, y) : there exists z0 = x, z1, . . . , zn = y ∈ X
such that (zi−1, zi) ∈ U for i = 1, . . . , n}.
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The intuition behind this definition is that if we want U to be the
topological equivalent of having an (ε/n)-ball at each point, then Un

would take the place of an ε-ball at each point. Observe that if U
is symmetric, then the order of the elements within each ordered pair
does not matter. Also, for any neighborhood U of ∆X we can find a
neighborhood V of ∆X such that F (V 2) ⊂ U .

Definition 8. A homeomorphism f : X → X is (topologically) expan-
sive if there is a closed neighborhood N of ∆X such that for any distinct
x, y ∈ X there exists n ∈ Z such that F n(x, y) 6∈ N . Such a neighbor-
hood N is called an expansive neighborhood for f . Let E = {(f,X) : X
is first countable, locally compact, paracompact, Hausdorff, f : X → X
is an expansive homeomorphism}.

Lemma 9. If (f,X) ∈ E, then there is a proper expansive neighbor-
hood.

Proof. Let N be an expansive neighborhood for f . Since X is locally
compact, each x ∈ X has an open, relatively compact neighborhood U̇x.
Since X is paracompact, the open cover {U̇x} has a closed (and hence
compact) locally finite refinement {V̇α} ([9, Chapter 5, Theorem 28]).

Then A = N ∩
(⋃

α

(
V̇α × V̇α

))
is a proper expansive neighborhood.

�

Let D and E be neighborhoods of ∆X . A D-chain is a sequence
{x0, x1, . . . , xn} (n ≥ 1) such that (f(xi−1), xi) ∈ D for i = 1, . . . , n.
A D-pseudo-orbit is a bi-infinite D-chain. A D-pseudo-orbit {xi} is
E-traced by a point y ∈ X if (f i(y), xi) ∈ E for all i ∈ Z.

Definition 10. A homeomorphism f : X → X has the (topological)
shadowing property if for every neighborhood E of ∆X , we can find
a neighborhood D of ∆X such that every D-pseudo-orbit is E-traced
by some point y ∈ X. Let S = {(f,X) : X is first countable, locally
compact, paracompact, Hausdorff, f : X → X is a homeomorphism
with the shadowing property}.

Remark 11. If (X, d) is a compact metric space, then for any neighbor-
hood U of ∆X , we can find δ > 0 such that Uδ = d−1[0, δ] ⊂ U . On the
other hand, every Uδ is a neighborhood of ∆X . Thus, the above def-
initions coincide with the usual notions of expansivity and shadowing
on compact metric spaces. However, the following example shows that
this argument does not hold if X is not compact.

Example 12. If X is a noncompact metric space, then a neighborhood
U of ∆X may not contain an open set Uδ (defined as above) for any
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δ > 0. For instance, consider the neighborhood U = {(x, y) ∈ R2 :

|x− y| < e−x
2} of ∆R. There is no δ > 0 with Uδ ⊂ U .

As noted earlier, the following properties do not hold for the metric
definitions in the noncompact case.

Proposition 13. (1) (f,X) ∈ E [resp. S] if and only if (fk, X) ∈
E [resp. S] for all nonzero k ∈ Z.

(2) If h : X → Y is a homeomorphism, then (f,X) ∈ E [resp. S] if
and only if (h ◦ f ◦ h−1, Y ) ∈ E [resp. S].

Proof. (1) It is clear that f is expansive (or has the shadowing property)
if and only if the same is true for f−1 (N is an expansivity neighborhood
for f if and only if it is an expansivity neighborhood for f−1; a sequence
is a D-chain for f if and only if it is an F−1(D)-chain for f−1). Thus
we will assume without loss of generality that k is positive.

If N is an expansive neighborhood for f , then
⋂k−1
i=0 F

−i(N) is an
expansive neighborhood for fk. Conversely, if N is an expansive neigh-
borhood for fk, then it is a fortiori an expansive neighborhood for
f .

Suppose f has the shadowing property and E is any neighborhood of
∆X . Then there exists a neighborhood D of ∆X such that every (D, f)-
pseudo-orbit is (E, f)-traced by some point y. Let {. . . , x−1, x0, x1, . . .}
be a (D, fk)-pseudo-orbit. Then

{. . . , x−1, f(x−1), f
2(x−1), . . . , f

k−1(x−1), x0, f(x0), . . . , f
k−1(x0), x1, . . .}

is a (D, f)-pseudo-orbit, and hence there is an (E, f)-tracing point, y.
It follows that y is an (E, fk)-tracing point for the (D, fk)-pseudo-orbit
as well. So fk has the shadowing property.

Conversely, assume that fk has the shadowing property, and let E be
any neighborhood of ∆X . Let B be a symmetric neighborhood of ∆X

such that Bk ⊂ E. Then E ′ =
⋂k−1
i=0 F

−k(B) is also a neighborhood
of ∆X ; so there exists a neighborhood D (which we may assume is
contained in E ′) of ∆X such that every (D, fk)-pseudo-orbit is (E ′, fk)-
traced by some point y. Let C be a symmetric neighborhood of ∆X such
that Ck ⊂ D, and define D′ =

⋂k−1
i=0 F

−k(C). Let {. . . , x−1, x0, x1, . . .}
be a (D′, f)-pseudo-orbit. Then {. . . , x−k, x0, xk, x2k . . .} is a (D, fk)-
pseudo-orbit; hence there is an (E ′, fk)-tracing point, y. Then y is an
(E, f)-tracing point for {. . . , x−1, x0, x1, . . .}. So f has the shadowing
property.

(2) Define H : X×X → Y ×Y to be h×h. Then N is an expansivity
neighborhood for f if and only if H(N) is an expansivity neighborhood
for h ◦ f ◦ h−1. The (D, f)-pseudo-orbit {. . . , x−1, x0, x1, . . .} is (E, f)-
traced by the point y if and only if the (H(D), h◦f ◦h−1)-pseudo-orbit
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{. . . , h(x−1), h(x0), h(x1), . . .} is (H(E), h◦f ◦h−1)-traced by the point
h(y). �

Definition 14. A homeomorphism f : X → X is topologically Anosov
if (f,X) ∈ E ∩ S.

Lemma 15. Let the homeomorphism f : X → X be topologically
Anosov. If E is a neighborhood of ∆X such that E2 is an expansive
neighborhood for f , then there is a neighborhood D of ∆X such that
every D-pseudo-orbit is E-traced by exactly one orbit of X. If the D-
pseudo-orbit is periodic, then so is the orbit that E-traces it.

Proof. Let E be a symmetric neighborhood of ∆X such that E2 is an
expansive neighborhood for f . Because f has the shadowing property,
there exists a neighborhood D of ∆X such that any D-pseudo-orbit is
E-traced by some point in X. We must now show uniqueness. Suppose
{xi : i ∈ Z} is a D-pseudo-orbit and that x, y ∈ X both E-trace it.
Then for all i, (xi, f

i(x)), (xi, f
i(y)) ∈ E. So (f i(x), f i(y)) ∈ E2 for

all i. Since E2 is an expansive neighborhood for f , (x, y) ∈ ∆X , and
hence x = y.

Now suppose {yk} is a periodic D-pseudo-orbit with period n and let
x be the unique E-tracing point. Then {yk+n} is a periodic D-pseudo-
orbit and since fn(x) is an E-tracing point, it must be the unique one.
But {yk} = {yk+n}, so it must be the case that x = fn(x), and hence
x is periodic. �

3. Stable and unstable sets and topological stability

We now introduce notions of stable and unstable sets.

Definition 16. Let x ∈ X and B be a neighborhood of ∆X .

(1) The local stable set of x relative to B is

W s
B(x) = {y ∈ X : F i(x, y) ∈ B, ∀ i ≥ 0},

(2) the local unstable set of x relative to B is

W u
B(x) = {y ∈ X : F i(x, y) ∈ B, ∀ i ≤ 0},

(3) the stable set of x is

W s(x) ={y ∈ X : ∀ neighborhood B of ∆X , ∃n ∈ N such that

F i(x, y) ∈ B, ∀ i ≥ n}, and

(4) the unstable set of x is

W u(x) ={y ∈ X : ∀ neighborhood B of ∆X , ∃n ∈ N such that

F i(x, y) ∈ B, ∀ i ≤ −n}.



8 TARUN DAS, KEONHEE LEE, DAVID RICHESON, AND JIM WISEMAN

A neighborhood U ⊂ X ×X of the diagonal ∆X is wide if there is a
compact set Ṡ ⊂ X such that U ∪ (Ṡ ×X) = X ×X. In other words,
U is wide if for any x not in the compact set Ṡ, the cross section U [x]
is X.

Lemma 17 (Continuity Lemma). Let Y be locally compact and Haus-
dorff. A map f : X → Y is continuous if for any wide neighborhood U
of ∆Y , there exists a neighborhood V of ∆X such that F (V ) ⊂ U .

Proof. Let x be any point in X and let Ḃ ⊂ Y be any neighborhood
of f(x); to prove continuity we will find a neighborhood Ȧ of x such
that f(Ȧ) ⊂ Ḃ. Let U be any wide neighborhood of ∆Y such that
U [f(x)] ⊂ Ḃ (for example, U = (Ḃ × Ḃ) ∪ ((Y − cl(Ḃ′)) × Y ), where
Ḃ′ is a neighborhood of f(x) such that Cl(Ḃ′) ⊂ Ḃ). Then, by hy-
pothesis, there exists a neighborhood V of ∆X such that F (V ) ⊂ U .
So F (x, V [x]) = {f(x)} × f(V [x]) ⊂ {f(x)} × U [f(x)], so f(V [x]) ⊂
U [f(x)] ⊂ Ḃ. Thus we can take Ȧ = V [x]. �

Lemma 18. Let (f,X) ∈ E and let A be a proper expansive neigh-
borhood for f . For each N ∈ N, define VN(A) := {(x, y) ∈ X × X :
F n(x, y) ∈ A for all |n| ≤ N}. Then for any wide neighborhood U of
∆X there exists N ∈ N such that VN(A) ⊂ U . Conversely, for every N
there exists a neighborhood U of ∆X such that U ⊂ VN .

Proof. Suppose there is a wide neighborhood U of ∆X such that for
each N ∈ N there exists (xN , yN) ∈ VN(A) ∩ ((X × X) − U). Let
L = {(xN , yN) : N ∈ N}. Because U is a wide neighborhood of ∆,
there exists a compact set Ṡ ⊂ X such that U∪(Ṡ×X) = X×X. Then
L ⊂ (X×X−U)∩A ⊂ Ṡ×A[S], which is compact, so clL has a limit
point, (p, q). Clearly p 6= q. On the other hand, choose a subsequence
(xNk

, yNk
) in L converging to (p, q) as k → ∞. Observe that for any

integer i, F i(p, q) = limk→∞ F
i(xNk

, yNk
) ∈ A, since F i(xNk

, yNk
) ∈

A for |i| ≤ Nk. Since F i(p, q) ∈ A for all i and A is an expansive
neighborhood, we must have that p = q, which is a contradiction.

For the converse, take U =
⋂
|n|≤N F

−n(intA). �

Lemma 19. Let (f,X) ∈ E. If B is a proper expansive neighborhood
for f and x is a periodic point, then W σ

B(x) ⊂ W σ(x), where σ = s, u.

Proof. We will prove the case σ = s; the case σ = u is similar. For
the sake of contradiction, suppose there is a periodic point x ∈ X and
a proper expansive neighborhood B such that W s

B(x) 6⊂ W s(x). Say
that x has period p and the periodic orbit is {x0, . . . , xp−1}. Because
W s
B(x) 6⊂ W s(x), there is a y ∈ W s

B(x) and a neighborhood C of



SPECTRAL DECOMPOSITION FOR TOP. ANOSOV HOMEOMORPHISMS 9

∆X such that F n(x, y) 6∈ C for infinitely many n > 0. So, there
exist infinitely many points of the form (xj, f

nk(y)) for some 0 ≤ j <
p−1. Because B[xj] is compact, the sequence {(xj, fnk(y))} has a limit
point (xj, y0) ∈ B− int(C) (without loss of generality, assume that the
sequence is convergent). Clearly, F n(xj, y0) ∈ B for all n ≥ 0. For
each i > 0 consider the sequence {(f−i(xj), fnk−i(y))}. It has a limit
(xj−i, y−i) ∈ {xj−i}×B[xj−i] (where the subscript of x is taken mod p).
Then f(y−i) = y1−i for all i > 0. Thus, F n(xj, y0) = (fn(xj), yn) ∈ B
for all n < 0. By expansiveness, this implies that (xj, y0) ∈ ∆X . But
(xj, y0) 6∈ int(C). So this is a contradiction. �

The results in the following proposition are generalizations of the
ones for compact spaces ([2, Theorem 4.1.1, Lemma 2.4.1(1)]).

Proposition 20. Let f : X → X be topologically Anosov. Then we can
find neighborhoods B and D of ∆X and a continuous map t : D → X
such that

(1) W s
B(x) ∩W u

B(y) contains at most one point for any x, y ∈ X,
(2) W s

B(x) ∩W u
B(y) = {t(x, y)} if (x, y) ∈ D,

(3) W s
B(x) ∩D[x] = {y : y = t(x, y), where (x, y) ∈ D},

(4) W u
B(x) ∩D[x] = {y : y = t(y, x), where (x, y) ∈ D},

Proof. Let A be a proper expansive neighborhood for f . Let B be
a symmetric neighborhood of ∆X such that B3 ⊂ A, and let E =
B ∩ F−1(B), which is also a symmetric neighborhood of ∆X . Since f
has the shadowing property, there exists a neighborhood D of ∆X such
that every D-pseudo-orbit is E-traced by some orbit in X. We claim
that E2 is an expansive neighborhood for f , and hence by Lemma 15
the tracing point is unique. Let (x, y) ∈ E2. Then there is a z ∈ X
such that (x, z), (z, y) ∈ E. So (f(x), f(z)), (f(z), f(y)) ∈ B and hence
(f(x), f(y)) = F (x, y) ∈ B2 ⊂ B3 ⊂ A. This implies that F (E2) is an
expansive neighborhood for f , and hence so is E2.

For each point (x, y) ∈ D, define a D-pseudo-orbit {xi} in X by

xi =

{
f i(x) if i ≥ 0

f i(y) if i < 0.

Let t(x, y) denote the unique E-tracing point. This defines a map
t : D → X (we postpone the proof of continuity to the end of the
proof).

Let (x, y) ∈ D. Then F n(x, t(x, y)) ∈ E ⊂ B for all n ≥ 0, so
t(x, y) ∈ W s

B(x). Likewise, F n(y, t(x, y)) ∈ E ⊂ B for all n < 0
and since F (E) ⊂ B, F−1(y, t(x, y)) ∈ E implies (y, t(x, y)) ∈ B. So
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t(x, y) ∈ W u
B. In particular,

t(x, y) ∈ W s
B(x) ∩W u

B(y).

Furthermore, the expansivity of f does not allow W s
B(x) ∩W u

B(y) to
have more than one point. This proves (1) and (2).

We prove (3); the proof of (4) is similar. To prove equality we prove
containment in both directions. (⊃): Let y = t(x, y) and (x, y) ∈ D.
Then y E-traces x in forward time. So F n(x, y) ∈ E ⊂ B for all n ≥ 0.
Thus y ∈ W s

B(x) ∩ D[x]. (⊂): Suppose y ∈ W s
B(x) ∩ D[x]. Then,

F n(x, y) ∈ B for all n ≥ 0. Clearly F n(y, y) ∈ B for all n < 0, so y
B-traces the pseudo-orbit {xi} (defined as above). By definition, the
point t(x, y) E-traces this pseudo-orbit, and because E ⊂ B, it also B-
traces it. So, for all n ∈ Z, (fn(t(x, y), xn)) ∈ B and (fn(y), xn) ∈ B,
which implies that F n(t(x, y), y) ∈ B2 ⊂ A. Thus, by expansiveness,
y = t(x, y).

We now show that the tracing map t is continuous. Let U be a wide
neighborhood of ∆X . By Lemma 17 we must find a neighborhood V
of ∆X such that T (V ) ⊂ U , where T = t × t. By Lemma 18, we can
find N such that VN(A) ⊂ U . Define neighborhoods of ∆X

W1 =
N⋂
n=0

F−n(B) and W2 =
N⋂
n=0

F n(B).

Let g : X4 → X4 be the homeomorphism given by

g(x, y, x1, y1) = (x, x1, y, y1),

and take

V = g−1(W1 ×W2) ∩ (D ×D).

Clearly V is a neighborhood of ∆D. Let (x, y, x1, y1) ∈ V . Because
(x, y), (x1, y1) ∈ D, F n(t(x, y), x), F n(x1, t(x1, y1)) ∈ B for 0 ≤ n ≤
N , and because (x, x1) ∈ W1, F

n(x, x1) ∈ B for 0 ≤ n ≤ N . So
F n(t(x, y), t(x1, y1)) ∈ B3 ⊂ A for 0 ≤ n ≤ N . Similarly, we can show
that F n(t(x, y), t(x1, y1)) ∈ A for −N ≤ n ≤ 0, and hence T (V ) ⊂
VN(A) ⊂ U . Thus t is continuous. �

Definition 21. A homeomorphism f : X → X is called topologically
stable if for any neighborhood B of ∆X there exists a neighborhood
D of ∆X such that for any homeomorphism g : X → X satisfying
(f(x), g(x)) ∈ D, for all x ∈ X there exists a continuous self map h of
X satisfying (h(x), x) ∈ B for all x ∈ X and f ◦ h = h ◦ g.

We close this section by proving the following extension of a main
result in [17].
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Theorem 22. If X is a first countable, locally compact, paracompact,
Hausdorff space and the homeomorphism f : X → X is topologically
Anosov, then f is topologically stable.

Proof. Let B be a neighborhood of ∆X . Let A be a proper expansive
neighborhood for f and E be a symmetric neighborhood of ∆X such
that E3 ⊂ A ∩ B. By Lemma 15 there is a neighborhood D of ∆X

such that every D-pseudo-orbit is uniquely E-traced by some point of
X. Now take a homeomorphism g : X → X which is D-close to f . Let
x ∈ X. Because (f(gn−1(x)), gn(x)) ∈ D for all n ∈ Z, {gn(x) : n ∈ Z}
is a D-pseudo-orbit for f . By the shadowing property, this defines a
map h : X → X sending x to the unique point h(x) that E-traces the
pseudo-orbit.

Thus for any x ∈ X, we have (fn(h(x)), gn(x)) ∈ E for n ∈ Z. In
particular, (h(x), x) ∈ E ⊂ E3 ⊂ B for all x ∈ X. Furthermore,
substituting g(x) for x yields

(fn(h(g(x))), gn(g(x))) = (fn((h ◦ g)(x)), gn(g(x))) ∈ E
and

(fn+1(h(x)), gn+1(x)) = (fn((f ◦ h)(x)), gn(g(x))) ∈ E
for all n ∈ Z. This implies that

(fn((f ◦ h)(x)), fn((h ◦ g)(x))) ∈ E2 ⊂ A

for all n ∈ Z, and so (f ◦ h)(x) = (h ◦ g)(x).
Now we will use Lemma 17 to show that h is continuous. Let U be

a wide neighborhood of ∆X . By Lemma 18 there exists N ∈ N such
that VN(A) ⊂ U . Let W =

⋂
|k|≤N G

k(E), where G = g × g. We must

show that H(W ) ⊂ U , where H = h× h. Let (x, y) ∈ W . If |n| ≤ N ,
then (h(gn(x)), gn(x)), (gn(x), gn(y)), and (h(gn(y)), gn(y)) are in E,
and hence

(fn(h(x)), fn(h(y))) = (h(gn(x)), h(gn(y))) ∈ E3 ⊂ A.

Thus, H(x, y) ∈ VN(A) ⊂ U . �

Remark 23. In fact, we can prove something slightly stronger than the
conclusion of the previous theorem. If the neighborhood B is symmet-
ric and B2 is an expansive neighborhood for f , then h is unique. Sup-
pose h′ is another continuous map satisfying the same properties as h.
Then for all n ∈ Z, (h(gn(x)), gn(x)), (h′(gn(x)), gn(x)) ∈ B, and hence
(fn(h(x)), fn(h′(x))) = (h(gn(x)), h′(gn(x))) ∈ B2. So, h(x) = h′(x).

Remark 24. If the homeomorphism g in the above theorem is also
expansive with B2 an expansive neighborhood and B is symmetric,
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then h is injective. Indeed, suppose h(x) = h(y) for some x, y ∈ X.
Then for any n ∈ Z,

h(gn(x)) = fn(h(x)) = fn(h(y)) = h(gn(y)).

In particular, (h(gn(x)), gn(x)), (h(gn(y)), gn(y)) = (h(gn(x)), gn(y)) ∈
B, so (gn(x), gn(y)) ∈ B2 for all n ∈ Z. Thus x = y.

4. Chain recurrence and decomposition theorem

Chain recurrence is an important notion in dynamical systems de-
fined on metric spaces. In this section we introduce a topological gen-
eralization of chain recurrence. We then prove our main theorem, The-
orem 3.

Definition 25. Let x, y ∈ X. If there is an A-chain from x to y and
one from y to x for every neighborhood A of ∆X , then we write x ∼ y.
The set CR(f) = {x ∈ X : x ∼ x} is called the chain recurrent set
for f . The relation ∼ induces an equivalence relation on CR(f); the
equivalence classes are called chain components of f .

Definition 26. The non-wandering set of f is Ω(f) = {x ∈ X :
for any open neighborhood Ġ of x, fn(Ġ) ∩ Ġ 6= ∅ for some n > 0}.

Proposition 27. If (f,X) ∈ S, then Ω(f) = CR(f).

Proof. It is clear from the definitions that Ω(f) ⊂ CR(f), so we must
show the opposite inclusion. Let x ∈ CR(f) and U̇ be an open neigh-
borhood of x. Let E be a neighborhood of ∆X such that E[x] ⊂ U̇ .
By the shadowing property there exists a neighborhood D of ∆X such
that every D-pseudo-orbit is E-traced by some point. Since x is chain
recurrent, there exists a D-chain {x0 = x, x1, . . . , xn = x}. We can
extend this D-chain (in any way we want) to a full D-pseudo-orbit.
This pseudo-orbit is E-traced by a point y ∈ X. This means that
y, fn(y) ∈ E[x] ⊂ U̇ , and so x ∈ Ω(f). �

We have the following generalization of a result proved by Yang
([18, Lemma 1(2)]); Yang uses the metric definitions of expansivity,
shadowing, and chain recurrence.

Proposition 28. If the homeomorphism f : X → X is topologically
Anosov, then Per(f) is dense in CR(f).

Proof. Let x ∈ CR(f) and U̇ be an open set containing x. Let E be
a neighborhood of ∆X such that E[x] ⊂ U̇ and E2 is an expansive
neighborhood for f . It suffices to show that there is a periodic point
in E[x].
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By Lemma 15, we can find a symmetric neighborhood D of ∆X such
that every periodic D-pseudo-orbit is E-traced by a periodic point.
Let V = D ∩ F−1(D). By Proposition 27, CR(f) = Ω(f), so x is non-
wandering. Thus, there is a y ∈ V [x] and an n ∈ N such that fn(y) ∈
V [x]. Then (x, y), (x, fn(y)) ∈ V and hence (f(x), f(y)), (fn(y), x) ∈
D. This enables us to define a periodicD-pseudo-orbit {. . . , x0, x1, . . . , xn−1, x0, x1, . . .}
in which x0 = x, x1 = f(y),. . . , xn−1 = fn−1(y). By Lemma 15 there
is a periodic point p that E-traces this pseudo-orbit. So p ∈ E[x]. �

Proposition 29. Let X be a first countable, Tychonoff space, f : X →
X be a homeomorphism, and R be a chain component of f . Then,

(1) CR(f) is closed in X,
(2) R is closed in X, and
(3) R and CR(f) are f -invariant.

Proof. First we will prove that the set

S = {(x, y) ∈ X×X : ∀ neighborhood A of ∆X , ∃A-chain from x to y}

is closed in X ×X. Let {(xi, yi)}∞i=0 ⊂ S be a sequence converging to
(x, y) ∈ X ×X. Let A be a neighborhood of ∆X ; we must prove that
there is an A-chain from x to y.

Choose symmetric neighborhoods W and U of ∆X and N > 0 such
that W 3 ⊂ A, U ⊂ W ∩ f−1(W ), and (xN , x), (yN , y) ∈ U . Since
(xN , yN) ∈ S there exists a W -chain {xN = z0, z1, . . . , zm = yN}. Sup-
pose m = 1. Then (f(xN), yN) ∈ W . Moreover, because (x, xN) ∈
U ⊂ f−1(W ), (f(x), f(xN)) ∈ W . Also, (yN , y) ∈ U ⊂ W . So
(f(x), y) ∈ W 3 ⊂ A, and hence {x, y} is an A-chain. Likewise, if
m > 1, we can show that (f(x), z1), (f(zm−1), y) ∈ W 2 ⊂ A, and there-
fore {x, z1, . . . , zm−1, y} is an A-chain. Hence (x, y) ∈ S.

Now, let ST = {(x, y) ∈ X ×X : (y, x) ∈ S} and S̃ = S ∩ ST . Then
S̃ = {(x, y) ∈ X ×X : x ∼ y}. Since S and ST are closed sets, so is S̃.

(1) Note that CR(f) = π1

(
∆X ∩ S̃

)
, where π1 : X ×X → X is the

projection onto the first coordinate. Since ∆X ∩ S̃ is closed in ∆X and

π1 : ∆X → X is a homeomorphism, CR(f) = π1

(
∆X ∩ S̃

)
is closed as

well.
(2) Given any x ∈ CR(f), S̃[x] is closed, and S̃[x] is the chain

component of f containing x.
(3) Let x ∈ R. We must show that f(x) ∈ R. Let A be a neighbor-

hood of ∆X . Clearly {x, f(x)} is an A-chain from x to f(x). Thus it
remains to find an A-chain from f(x) to x. Choose neighborhoods B
and C of ∆X such that B2 ⊂ A and C ⊂ B ∩ f−1(B). Since x is chain
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recurrent, there is a C-chain {x = x0, x1, . . . , x = xn} from x to itself.
Then {f(x), x2, x3, . . . , x = xn} is the desired A-chain. �

Proposition 30. If the homeomorphism f : X → X is topologically
Anosov and R is a chain component, then R is both open and closed in
CR(f).

Proof. Let R be a chain component of f . It follows from Proposition
29 that R is closed in CR(f), so we must only show that R is open in
CR(f). Let D be the neighborhood of ∆X , which we may assume is
open and symmetric, given by Proposition 20. Because D[R] is open,
it suffices to show that a point x ∈ D[R] ∩ CR(f) is in R. Let E be a
neighborhood of ∆X ; we will find an E-chain from x to x via a point
of R.

Let U be a neighborhood of ∆X such that U2 ⊂ E ∩D. By Propo-
sition 28, there is a periodic point p ∈ U [x] ⊂ D[x]. Then there exists
q ∈ R such that (p, q), (q, p) ∈ D; by Proposition 28 we may assume q
is periodic. By Proposition 20(2) and Lemma 19, there exist z1, z2 ∈ X
such that z1 ∈ W u(p)∩W s(q) and z2 ∈ W s(p)∩W u(q). So, there exist
L,M,N,K ∈ N such that (f(p), f−L(z1)), (q, fM(z1)), (f(q), f−N(z2)),
(p, fK(z2)) ∈ U . Then

{p, f−L(z1), . . . , f
M−1(z1), q, f

−N(z2), . . . , f
K−1(z2), p}.

is a U -chain, and hence

{x, f−L(z1), . . . , f
M−1(z1), q, f

−N(z2), . . . , f
K−1(z2), x}.

is an E-chain. �

Definition 31. A map f : X → X is topologically transitive if for any
pair of non-empty open sets Ġ, Ḣ ⊂ X, there exists n ∈ N such that
fn(Ġ) ∩ Ḣ 6= ∅.

We now show that a map that is expansive and has the shadowing
property is topologically transitive on each chain component. This is
a generalization of a result of Yang’s ([18, Lemma 3]) in which he uses
the metric definitions of expansivity, shadowing, and chain recurrence.

Proposition 32. If the homeomorphism f : X → X is topologically
Anosov and R is a chain component, then f |R : R→ R is topologically
transitive.

Proof. Let Ġ and Ḣ be nonempty open sets in R. Let x ∈ Ġ and
y ∈ Ḣ. Let E be a neighborhood of ∆X such that x ∈ E[x]∩R ⊂ Ġ, y ∈
E[y]∩R ⊂ Ḣ, E[x]∩CR(f) ⊂ R, and E2 is an expansive neighborhood
for f . By Lemma 15, there exists a neighborhood D of ∆X (we may



SPECTRAL DECOMPOSITION FOR TOP. ANOSOV HOMEOMORPHISMS 15

also assume D ⊂ E) such that every periodic D-pseudo-orbit is E-
traced by a periodic orbit. Since x, y ∈ R, there is a D-chain from x to
itself through y, {x0 = x, . . . , xn = y, . . . , xm = x} in X which we can
extend to a periodic D-pseudo-orbit, {. . . , xm−1, xm = x0, . . . , xm =
x0, x1, . . .}. By Lemma 15 there is a periodic point p ∈ X that E-
traces this pseudo-orbit. In fact, p ∈ E[x] ∩ CR(f) ⊂ E[x] ∩ R ⊂ Ġ
and fn(p) ⊂ E[y] ∩R ⊂ Ḣ. So fn(p) ∈ fn(Ġ) ∩ Ḣ 6= ∅. �

Finally, we have all the ingredients to prove our main theorem.

Proof of Theorem 3. Proposition 27 tells us that Ω(f) = CR(f). We
know that CR(f) has a natural decomposition into chain components,
{Rλ}, which, by Propositions 29(3) and 30, are open and closed in Ω(f)
and are f -invariant. By Proposition 32, f is topologically transitive on
each such component. Finally, notice that if X is compact, then so
is Ω(f), and because {Rλ} is a open cover of Ω(f) by disjoint sets, it
must be finite. �

5. Relationships to metric definitions

In this section with discuss the relationships between our topological
definitions and the usual metric definitions for expansiveness, shadow-
ing, and chain recurrence. First, we give another generalization of chain
recurrence, due to Hurley.

Definition 33 ([8]). Let (X, d) be a metric space and f : X → X
be a homeomorphism. Let P denote the set of continuous functions
from X to (0,∞). For δ ∈ P , a δ-chain is a sequence {x0, x1, . . . , xn}
(n ≥ 1) such that d(f(xi−1), xi) < δ(f(xi−1)) for i = 1, . . . , n. A point
x is strongly chain-recurrent if for any δ ∈ P , there is a δ-chain from x
to itself.

In the case that we have a metric space, the various properties are
related in the following way.

Proposition 34. Let (X, d) be a metric space and f : X → X be a
homeomorphism.

(1) Metric expansivity implies topological expansivity, but not vice
versa.

(2) Metric shadowing does not imply topological shadowing, nor
does topological shadowing imply metric shadowing.

(3) Strong chain recurrence and topological chain recurrence are
equivalent. They imply metric chain recurrence, but not vice
versa.
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If X is compact, then metric and topological expansivity are equivalent,
metric and topological shadowing are equivalent, and metric, topologi-
cal, and strong chain recurrence are equivalent.

Proof. (1) If e is an expansive constant, then Ue = d−1[0, e] is an ex-
pansive neighborhood; thus metric expansivity implies topological ex-
pansivity. It is not difficult to see that the homeomorphism in Example
6 is topologically expansive. Thus, the opposite implication does not
hold.

(2) The first half follows from Example 7. The given homeomorphism
has the shadowing property with respect to one metric, but it does not
have the topological shadowing property (this is easiest to see with the
second metric).

Let f be the identity map on the space X = {xn}∞n=1, where xn =∑n
i=1(1/i), given the metric inherited from R. Since X has the discrete

topology, we can pick a neighborhoodD of ∆X such thatD[x] = {x} for
all x. Then aD-pseudo-orbit is an actual f -orbit (that is, a fixed point).
So the topological shadowing property is trivially satisfied. On the
other hand, given δ > 0 andN > 1/δ, {. . . , xN , xN , xN , xN+1, xN+2, . . .}
is a δ-pseudo-orbit, but clearly such a pseudo-orbit is not traced by any
orbit. So f does not have the metric shadowing property.

(3) Topological chain recurrence clearly implies strong chain recur-
rence. To prove the opposite implication, we must show that for any
open neighborhood U of ∆X , there exists a function δ ∈ P such that
Bδ ⊂ U , where Bδ = {(x, y) : d(x, y) < δ(x)}. We may assume
that U [x] ( X for all x. Define a function h : X → (0,∞) by
h(x) = d(x,X − U [x]). Since h is lower semicontinuous, the func-
tion δ(x) = inf{h(y) + d(x, y) : y ∈ X} is continuous (see [19, Theo-
rem 67.2]), and 0 < δ(x) < h(x) for all x. Thus Bδ ⊂ Bh ⊂ U .

It is clear that topological and strong chain recurrence imply metric
chain recurrence. Hurley gives an example ([8, Example 1]) showing
that the opposite implication does not hold.

Finally, the equivalences in the compact case are clear, as in Re-
mark 11.

�

Hurley has shown ([8]) that strong (or topological) chain recurrence is
the right notion to extend Conley’s fundamental theorem of dynamical
systems to noncompact metric spaces. The second example from (2) is
expansive but not metric expansive, and it has the shadowing property
but not the metric shadowing property; thus Theorem 3 applies, but a
version using the usual metric definitions would not. These examples,
together with Proposition 13, suggest that the topological definitions



SPECTRAL DECOMPOSITION FOR TOP. ANOSOV HOMEOMORPHISMS 17

are a useful way to study the dynamical structure of a homeomorphism
on a noncompact space, even if the space is metric and the usual metric
definitions could be applied.
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