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CHAPTER 1

Introduction and terminology

The interplay between geometry, topology, measure theory and
operator theory has long been evident in the study of the Radon-Nikodym
property. Recently, results of substantial interest in the structure
of Banach spaces have been obtained by localizing these ideas to
individual subsets. The study of the Radon-Nikodym property for subsets
of Banach spaces can be thought of as the study of subsets whose
structural properties mimic those of the unit ball of a separable dual
space.

In this thesis we initiate the study of geometric, topological,
measure—theoretic and operator-theoretic characterizations of convex
weak*—compact subsets of dual Banach spaces whose structural properties
mimic those of the unit ball of ‘the dual of a space that contains no
copy of the sequence space 21 . The search for characterizations of
Banach spaces containing no copy of 21 has been very active since 1974
when Rosenthal [42] proved his striking theorem (for real spaces and

later, by Dor, for complex spaces).

Rosenthal's Theorem: A Banach space X contains no copy
of ll if and onlv if evervy bounded sequence in X has a weakly

Cauchy subsequence.

In Chapter 2 we discuss those global properties of the dual
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of a Banach space containing no copy of 21 that we later localize to
subsets of dual spaces. At the same time we contrast these properties
with the similar, yet subtly different, properties of the duals of
Asplund spaces.

Weakly precompact sets occupy our attention in Chapter 3.
Because of Rosenthal's Theorem, weak precompactness may be considered
as a localization of the property of containing no copy of 21 . After
some initial comments on weakly precompact sets, we use weak precompact-
ness in Lm(u) to identify dual-valued Pettis integrable functions and
Pettis representable operators. As one consequence of this work we are
able to show that bounded universally scalarly measurable functions on
a compact Hausdorff space taking values in the dual of a separable space
are Pettis integrable with respect to all regular Borel measures on the
domain space.

Chapter 4 contains the main part of the thesis. Here we
localize the ideas in Chapter 2 to obtain various types of characteriza-
tions for weak*-compact absolutely convex sets whose structural
properties mimic those of the unit ball of the dual of a space not
containing 21 . The cornerstone for our results is a factorization
theorem that will allow us to make use of weakly precompact sets and
Rosenthal's Theorem to obtain characterizations in terms of Dunford-
Pettis operators, universal measurability and points of continuity of
linear functionals in the second dual space, Baire-1 functioms,
Rademacher trees, extreme points and dentability.

The last chapter studies an interesting property for families



of real-valued functions that was originally formulated by Jean Bourgain.
This Bourgain property essentially allows us to replace the pointwise
convergence of a net of functions by an almost everywhere sequential
convergence. Our main result is that a bounded dual-valued function

£ : Q-+ Xt is Pettis integrable if the family {<f,x> : ||x|| < 1} has
the Bourgain property. We also discuss how the Bourgain property
identifies Pettis representable operators.

It is now time to fix some terminology. For the most part
our notation and terminology will confirm with that found in the bibles
of Banach space and vector measure theory — Dunford-Schwartz [11] and
Diestel-Uhl [10]. Throughout this thesis X and Y are real Banach
spaces with duals X* and Y* , respectively. By the unit ball, B, ,
of X we will always mean the closed unit ball. Similarly, an operator
will always be a bounded linear operator.

The triple (Q,Z,u) will always be a finite measure space.

A function f from § dinto X 1is str measurable if there is a

sequence (Sn) of simple functions from into X such that

lim ||£(t) - sn(t)ll =0
n

for almost all t in Q . If f is strongly measurable and there is

a sequence (Sn) of simple functionms such that

1imI l£-s|] du=0,
n ‘Q n '



then £ is said to bée Bochnetr integrable and we define

f..du=1imf s_du ,
E an JE O
where the integral of a simple function is defined in the usual way.

A function £ : @ >+ X 1is s¢alarly measurable if the scalar
function x*f(*) 1is measurable for each x* in the dual space X* .
In addition, the function f 1is Pettis integrable [33] if for each

set ~E in- - X there is an element XE of X that satisfies
x*(x_) = f x*f du
E E

for every x* in X* . 1In this case we write X = Pettis -.IE £ du .
The Pettis norm of a Pettis integrable function f is defined to be
sup {[|x*£]du : x* e x* , ||x*|] < 1} .

A dual-valued function f : Q > X* is weak*-scalarly
measurable if the scalar function <£f(+*),x> is measurable for each x
in X . If, in addition, the function <f(-),x> is integrable for
each x in X , in particular if £ 1is bounded, then an easy closed
graph argument (see Diestel and Uhl [10, page 53]) produces for each E
in- X an element x_* in X* such that

E

XE*(X) = I <f,x> du
E

for each x in X . The element xE* is called the Gel'fand (or weak*-)



of f over the set E

If @ is a compact Hausdorff space, then a real-valued
function ¢ defined on Q dis universally measurable if ¢ is
p-measurable for every Radon probability measure U on § ; that is,
if and only if there exists, for each regular probability measure U
on the Borel 0-algebra and for each o > 0 , a compact subset E of Q
with W(AE) < o such that the restriction of ¢ to E is continuous.
If £ dis a function from §2 into a Banach space X , then f is
called if the real-valued function x*f(-)
is universally measurable for each x* in X* . 1In addition, the
function £ is called if it is p~Pettis
integrable for each Radon probability measure 1y .

An operator T : Ll(u) + X 1is said to be [respectively,
Pettis] if there is a Bochner [respectively, Pettis]

integrable function £ : £ -+ X such that

T(g) =J gf dy
Q
[respectively, T(g) = Pettis - IQ gf dp] for each function g in Ll(u).
The Banach space X is said to have the Radon-Nikodym property
[respectively, weak Radon-Nikodym property] if for every finite measure
space (9,Z,U) , every operator T : Ll(u)'+ X is Bochner [respectively,
Pettis] representable. Finally, an operator T : X+ Y 1is said to be

a Dunford-Pettis operator if it maps weakly compact sets into norm

compact sets.



A function £ .is sald to be’ if £ is the point-
wise 1limit of a sequence of continuous functions. In 1899 Baire [2]

published the following remarkable result about such functions:

The Baire Characterization Theorem: Let K be a non-
empty compact metric space and f a real-valued funetion defined on
K. Then £ is a Baire<l function if and only. if for every non-
empty closed subset M of K , the restriction of £ to M has a

point of continuity relative to the topologiéal space M

Finally, a Banach space contains no copy of 21 if it
has no subspace homeomorphic to the usual sequence space 21 .
Parts of this thesis have appeared in [35], [36], [38]

and [39].



CHAPTER 2
Global properties of the dual of
a Banach space containing no copy of 21

In this chapter we discuss those properties of the dual of
a Banach space containing no copy of 21 that we shall subsequently
localize to weak*-compact convex subsets of dual spaces. Until 1974
it was thought by many that a separable Banach space that contains no
copy of 21 must have a separable dual. In that year, James [23] put
matters straight with one of his celebrated spaces, the James Tree
space, thus demonstrating that the class of separable spaces with
separable duals and the class of separable spaces containing no copy
of 21 are not identical classes.

This fact notwithstanding, there are many ways in which these
two classes are similar, yet subtly different. During the course of
this chapter we shall occasionally illustrate these differences. For
this reason, most of the chapter is expository and proofs will, in
general, not be included since the proofs for the local results will be
given later.

Let us agree that a Banach space is an if each
of its separable subspaces has a separable dual. The connection
between Asplund spaces and differentiation of measures has been studied
by a host of authors whose cumulative efforts revealed that a Bamach
space is an Asplund space if and only if its dual has the Radon-Nikodjm
property for the Bochner integral. The history of this theorem is
chronicled in Diestel and Uhl [10].
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Shortly thereafter, Musial [27] showed that a separable
Banach space contains no copy of 21 if and only if its dual has the
Radon-Nikodjm property for the Pettis integral. His proof used a deep
result of 0Odell and Rosenthal [31] on the weak*-sequential denseness
in X** of a separable space X containing no copy of 21 .
Subsequently, Janicka [24] employed Haydon's non-separable analogue
of the Odell-Rosenthal theorem to extend Musial's characterization to
arbitrary Banach spaces. Bourgain [3] independently obtained the same
result by combining a property of families of real-valued functions
with Rosenthal's Theorem in order to replace pointwise net convergence
of functions with almost everywhere sequential convergence (see
Chapter 5). We see, therefore, that the difference between the class
of Asplund spaces and the class of spaces not containing a copy of 21
is the difference between the Bochner and Pettis integrals.

Radon-Nikodym theorems for vector measures also yield
representation results for operators on L1 . Another operator-
theoretic characterization of spaces not containing 21 may be given

in terms of Dunford-Pettis operators.

Pelczynski's Theorem: Any one of the following statements
about a Banach space X dimplies all the others.

(a) The space X contains no copy of 21

(b) Every bounded linear operator from Ll[O,l] into X*
is a Dunford-Pettis operator.

(c) The dual X* contains no copy of L1[0,1]



Proof. To prove that (a) implies (b), let S : LI[p’l] > X*
be a bounded linear operator. Because Ll[O,l] is separable, the
closure of the range of S is a separable subspace Z of X*. An
appeal to a standard trick of Dunford and Schwartz (see [11, VI.8.8] or
[10, III.3.6]) produces a separable subspace Y of X such that Z is
isometric to a subspace of Y* ., Note that Y contains no copy of 21 .
Thus we can assume that S 1is a bounded linear operator from L1[0s1]
into Y* ., Next, the separability of Y and an easy compactness
argument originally due to Dunford and Pettis (see [11, VI.8.6] or the
first part of the proof of [10, III.3.1]1) produces a bounded function

g: [0,1] = Y* such that

S(By = J f(t)<g(t),y> dt
[0,1]

for all £ din Ll[O,l] and for all y in Y . To show that S maps
weakly compact sets into norm compact sets, it is enough to show that

S acts as a (norm) compact operator from Lw[O,l] into Y* . To
understand why, note that a weakly compact set K in L1[0,1] is

uniformly integrable and, in particular, that
lim [ |f|x[|fl >qapdt=0
n

uniformly in £ ©belonging to K . Since

S(K) C {S(fx[|f| in]): f ek}l+ {s(fx[lfl S n]): f e K},
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and if S maps Lﬁ[p,l]-bounded.sets into compact sets, then it easily
follows that S(K) 1is totally bounded.
Towards showing that S 1is a compact operator on Lm[O,l],

define an operator R : Y —> LI[O,l] by

R(y) (t) = <g(t).y>

for y in Y and t in [0,1} . Let (yn) be a bounded sequence
in Y . Since Y contains no copy of 21 » Rosenthal's Theorem
guarantees that (yn) has a weakly Cauchy subsequence, which we also
call (yn) . A glance at the definition of R .shows that R(yn) is
a pointwise Cauchy sequence and hence converges pointwise to a
measurable function. Moreover, the boundedness of g and the bounded-
ness of (yn) guarantee that (R(yn)) is Lw[O,l]—bounded. This,
combined with the bounded convergence theorem, proves that I%m R(yn)
exists in the Ll[O,l]—norm. Hence R : Y —> Ll[O,l] is a compact
operator and so is R¥* : Lm[O,l] —> Y* ., But now a routine computation
shows that R*(f) = S(f) for each £ in L_[0,1]. Hence S acts as
a compact operator on L [0,1] . This proves that (a) implies (b).

The proof that (b) implies (c¢) is trivial. If X* contains
a copy of Ll[O,l], then take any isomorphism S : LI[O,l] —> X*
and notice that S can not take weakly compact sets into norm compact
sets,

That (¢) implies (a) is well-known and easy. If X contains

a copy, Y , of li., then there is an isomorphism between lm and
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X*/Yl . Since % contains copies of Ll[o,l],.,there is an
isomorphism S : LI[O,l] —> X*/YLl . By an old theorem of
Grothendieck [20, Proposition 1], there.is an operator R : LI[O,l] > X*
such that § = oOR where o 1is the quotient map of X* onto X*/Yi.

It follows directly that R .is an isomorphism and this completes the

proof.

There are .two. ways to .use martingales to highlight the
difference between Asplund spaces and spaces not containing a copy of
21 . The relationship between the Radon—Nikbﬂﬁm property and martingale
mean convergence emerged from a number of independent papers in the
1960's including Chatterji [6], Metivier [26], Rénnow [41] and Uhl .
[49, 50]. What is known is that a Banach space X is an Asplund space
(i.e., X* has the Radon—Nikddim.property) if and only if every

Lw([O,lj,X*)—bounded martingale (fn,Bﬁ) is Cauchy in the Bochner norm;

i.e.,

Illiz o [1£ () - £.(®)]| ac = 0~
The related result for spaces not containing 21 has also
been around for a long time. It is a direct comsequence of material
from Pelczynski's Theorem, Musial [27] and Uhl [50], and.says that a
Banach space X contains no copy of 21 if and only if every
Lm([O,IJ,X*)-bounded martingale (fn’Bn) is Cauchy in the Pettis norm;

i.e.,
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1im

. sup If(t)x - f(t)xl dt = 0.
oo ||x|| <1 n n

[0,1]
In this instance, therefore, we see that the difference between the
class of Asplund spaces and the class of spaces not containing a copy .

of 2, 4dis the difference between the Bochner and Pettis norm.

1

A similar situation exists for the pointwise convergence of
martingales. A Banach space X 1is an Asplund space if and omly if’
for every Ll([O,lj,X*)—bounded"uniformly.integrable martingale (fﬁ’Bn)
there is a function f on [0,1]. with values in X* and a fixed null
set E such that lgm x**fn(t) = x**f(t) for 11 x** din X** and
for all t not in E . On the other hand, a Banach space contains no
copy of 21 if and only if for every ,Ll([o,l],x*)—bounded uniformly
integrable martingale (fn,Bn) there .is a function f on [0,1] with
values in X** sguch that I%m,x**fhﬁt) = x*%f(t) almost everywhere
for each x** in X** , where here the exceptional set can vary with
x*% jn X*%*% . Thus from the point of viéew.of pointwise convergence
of martingales, the difference between the class of Asplund spaces and
the class of spaces not containing a copy of 21 is the difference
between fixed null sets and mobile null .sets.

Stegall (see [10, VII.2.6]) has given a characterization of

Asplund spaces in terms of trees in the dual. In view of the close
relation between trees and martingales, it is perhaps not surprising
that Banach spaces not containing a copy of 21 can be characterized
in terms of trees in th dual.

A sequence (xn) in a Banach space X 1is called a tree if
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Xn = (o ¥ Xoppy) /2

for all =n =1,2,... . The martingale (fn) associated with a tree

(xn) is defined by

£ = %X{0,17 *

£y = %X[0,51 T FXpy,17

£3 = 1X10,51 t XXy, 11t FeXy, 3741 T X X(3/4,17

etc.

A tree (xn) is a §-tree if there exists a & > 0 such that
Hxn - xznll >3 and Hxn - x2n+1|| >6 for all n=1,2,... . One
of the prime facts about d-trees is that the martingale associated with
a 0-tree can not be Cauchy in the Bochmer norm [10, page 125]. This
is the underlying reason for why a Banach space is an Asplund space
if and only if its dual contains no bounded §-tree. For a history of
this result, whose finished version is due to Stegall, consult [10,
Chapters 3 and 7].

Now to obtain a characterization of Banach spaces X
containing no copy of 21., it is natural to ask what conditions on a
tree (xn*) in X* guarantee that the martingale (fn) associated
with (xn*) is not Cauchy in the Pettis norm. The idea is to find a
tree that attacks at the brittle roots of the weak Radon-Nikodjm property

as it spirals around the unit ball of X* (for related phenomena see
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J. Fletcher et al [14]). One way to do this is to force

su

sup. | 18, (®)x - £ (t)x]| dt > 8
lelei [0,1] " '

n+1
for all n =1,2,.... and for some fixed &§ > 0 . A brief computation

shows that this amounts to

Hxl*” Z § >
[lxy* - x,#1| > 26,
”x4.* - X5 + X6* - 37*H ke 48 ,

etc.

A tree (xﬁ*) satisfying the above inequalities is called a
§~Rademacher ttree. Two of the best known trees are both Rademacher
trees. Setting x| = X[O,l]-’ X, = ZX[O,%] s Xg = ZX[%,I]-’

x, = 4x[0’k]., X5 = 4X[%,%]" etc., produces a 1-Rademacher tree in

Ll[O,l] . Also, letting = (1,0,0,0,...) , X, = (1,1,0,0,...) ,

*1
= (1,1,"1’0,---) ’

X (1,-1,0,0,...) , x (1,1,1,0,...) , x

3 4 5

(1,-1,-1,0,...) , etc., yields a tree in

x, = (1,~-1,1,0,...) , x

6

the sequence space c¢

7

0 that is easily seen to be a l1-Rademacher tree.

In view of the discussion above and Pelczynski's Theorem, it becomes

clear that a Banach space contains no copy of &, if and only if its

1

dual contains no bounded &-Rademacher tree.
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In 1936 J. A. Clarkson defined the geomettic notion of
uniform convexity for the purpose of proving a Radon-Nikodjm theorem
for the Bochner integral. : Then after a thirty year lapse, Rieffel [40]
rekindled the belief in the Radon-Nikod§m property as an internal
geometric property of Banach spaces by introducing the concept of
dentability. 'We say that a bounded subset” A of a dual space 'X* is

weak*-dentable if for every- o > 0 there exists a .weak*-open slice

S = {x* e A : x*(x) > sup y¥(x) = g}
y*eA

for some x in X and B > 0. such that the norm diameter of S is
less than o . 'In 1975 Namioka and Phelps [30] proved that a Banach
space X 1is an:Asplund space if and only: if every bounded (weak*-compact
conQex).subSet of X* is weak*-dentable.” Then in 1981 Elias and
Paulette Saab [45] defined a bounded subset A of X* to be weak*-
scalar dentable if for every o > 0 and every x** in X** there
exists a weak*-open slice S of the form above such that the diameter

of x**S 1is less than o ; i.e.,

sup {[x**(x*) —,x**(y*)l T x% , y* € S} <a .

They proceeded to show that X contains no copy of 21 if and only .
if every bounded (weak*-compact convex) subset of X* is weak*-scalarly
dentable.

By now it is well known that- duals of Asplund spaces have’
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incredibly strong extremal properties. ' Indeed, a series of papers
culminating in the work of Huff and Morris [22] showed that a Banach
space X 1is an Asplund space if and only: if every norm-closed bounded
convex subset of X* 1is the norm-closed convex hull of its extreme
points. On the other hand, Haydon [21] showed that a Banach space X
contains no copy of '11 if and only if every weak*-compact convex
subset of X* 1is the norm~closed convex hull of its extreme points.
In this context, therefore, the difference between the class of Asplund
spaces and the class of spaces not containing a copy of kl is the
difference in extremal properties of bounded convex subsets of the dual
that are norm-closed but not weak*-compact.

The final criterion that we shall discuss concerns continuity
and measurability conditions on functionals in the second dual of a
Banach space. Following Saab and Saab [45], we shall say that a dual
compact subset M of the unit ball of X* and for each x** din X¥* ,
the restriction of x** to the set M equipped with the weak*-topology
has a point of continuity. "It is easy to see that any dual space X*
has the scalar point of continuity property if the restriction of every
x** in X** to the unit ball of X* with the weak*-topology 1s a
Baire-1 function. The Baire Characterization Theorem [2] ensures that
the converse holds when X is separable. Odell and Rosenthal [31]
used this fact to show that a separable Banach space X does not contain
a copy of '£1 if and only if the restriction of every x*% in X**

to the unit ball of X* is a Baire-1 function. Then in 1981 Saab
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and Saab [45] showed that any Banach space .(separable or not) contains
no copy of ﬁl if and only if its dual has the Scalar point of
continuity property.

In attempting to find a non-separable analogue of the  Odell-
Rosenthal result, Haydon [21] considered their ideas in.terms of
measurability rather than of the first Baire class and showed that a
Banach space X contains no copy of 21' if and only if every element
of X** is universally measurable as a function on the unit ball of
X* equipped with the weak*-topology. ' Another way of expressing this
is to say that X contains no copy of ‘21 if and only if the natural
identity map from the unit ball of X* with the weak*-topology into X¥
is universally scalarly measurable. It should be .remarked that work
by Schwartz [46] and by Saab .[44] shows that a Banach space X is an

Asplund space if and only if this map'.is universally measurable.



CHAPTER 3

Weakly precompact sets

One useful method for investigating a property of Banach
spaces is to localize the property by defining and studying it for an
individual subset. Thus one encounters, for example, Dunford-Pettis
sets, Radon—Nikodﬁm sets, and recently Stegall's GSP sets, which are
in some sense a localization of the Asplund property. In view of the
subtle differences between Asplund spaces and spaces not containing 21 s
it is not surprising that GSP sets are closely related to weakly
precompact sets. In the next chapter we shall prove an analogue of a
factorization theorem of Stegall which shows, roughly, that weakly pre-
compact sets are to sets with the weak Radon-Nikodym property as GSP
sets are to sets with the Radon-Nikodym property. First, however, we
take a closer look at weakly precompact sets and their role in recog-

nizing Pettis integrable functions and Pettis representable operators.

Definition: (a) A subset B of a Banach space X 1is called
if every bounded sequence in B has a weakly Cauchy

subsequence.
(b) We say that a bounded sequence (xn) in X is a copy

of the %-basis if there exists § > 0 such that

IR EN

for all finitely non-zero sequences (ak) of reals.

18
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In his fundamental paper -[42], Rosenthal proved that a
bounded subset of X is weakly precompact if and only. if it contains
no copy of the Rl;basis; In particular, the space X contains no

copy of 21 if and only if the unit ball of .X .1is weakly precompact.

Theorem 1 : A bounded subset: B of a Banach space X is
act 1f and for eaeh finite measure Q,Z,1),
each bounded linear operator § : X —> Lm(u) takes .sequences in B

into sequences with almost everywhere convergent subse

Proof. First suppose that B is weakly precompact. Let
S§:X—> Lw(p) be a bounded operator and let (xn) be a sequence
in B . Without loss of generality, we may assume that X 1s separable.
By [11, VI.8.6] there exists a bounded weak*-measurable function

g : 8 —> X* such that the restriction of S* to Ll(u) satisfies

S*f(x) = [ f<g,x> dyu for all f ¢ Ll(u)
Q : :

for each x in X . It follows that Sx(*) = <g(*),x> almost every-
where for each x in X , and therefore that there exists a null set
E satisfying

an(w) = <g(w),xh> for all n

for each w in Q\E . Now invoke the weak precompactness of B to
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find a weakly Cauchy subsequence (x_. ) of ,(xn) and observe that
<g(*),x_ > converges pointwise. Hence (Sx_ ) conﬁerges almost
eﬁerywhere;

Conversely, suppose B 1is not weakly precompact and use
Rosenthal's Theorem to find a sequence (xn) in B that is a copy of
the 21—basis; Let Z be the closed linear span of the sequence (xh)

Letting r denote the nth Rademacher function, define S from Z

to L_[0,1] by
S(z anxn) = z ar -

Because '(xn) is a copy of the ll;basis; the operator S is bounded,
and since ‘Lm[O,l]- is an injective space, the operator S has a
bounded extension to all of X . However, Sxﬁ =T for each n and
the sequence of Rademacher functions has no almost everywhere conver-

gent subsequence. This completes the proof..

Stegall [48] defined a GSP set :as follows: a subset B
of a Banach space "X has the GSP if, for each finite measure space
(2,Z,1) and each bounded linear operator S : X —> L_(u) , the set
S(B) 1is equimeasurable; that is, for each o > 0 there .is a measurable
set A such that p(\A) < o and the set fS(x)xA : x € B} is a
relatively norm compact subset of ,Lw(y) . It follows that if B 1is
a GSP set, then for each operator § : X ——> L _(}) one can find a

set E of small measure such that for each sequence (xn) in B , the
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sequence (anXQ\E) has an Lm(p)—convergent subsequence. On the
other hand, if B is weakly precompact, then Egorov's Theorem ensures
that for each sequence (xn) in B , there is a set E of small
measure, with E depending on the particular sequence chosen, such
that (anXQ\E) has an Lw(p)—convergent subsequence. The distinction
between weakly precompact sets and GSP sets is thus the distinction
between mobile exceptional sets and stationary exceptional sets.

Observations of Odell and Stegall {43] yield another
characterization of weakly precompact sets, namely that a subset B of
a Banach space X 1is weakly precompact if and only if for every Banach
space Y and for every Dunford-Pettis operator S : X —> Y , the
set S(B) 1is a relatively compact subset of Y . It follows immediately
from this characterization that the closed convex hull of a weakly pre-
compact set is also weakly precompact.

Geitz and Uhl [18] used the topological property of weak
compactness in L@(u) and B(I) to study Pettis integrable functions
and scalarly measurable functions that are weakly equivalent to strongly
measurable functions. Several other authors, including Phillips ([34],
Edgar [12, 13], Fremlin-Talagrand [16], Geitz [17] and Sentilles-
Wheeler [47], have also studied the problem of recognizing Pettis
integrable functions. By using weak precompactmess in L _(4) and a
deep theorem of Bourgain, Fremlin and Talagrand, we shall show that
bounded universally scalarly measurable functions on a compact Hausdorff
space taking values in the dual of a separable Banach space are univer-

sally Pettis integrable. The next lemma points in this direction.
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Lemma 2 : Let (Q,Z,y0) be a f te measure e and let

X be a separable Banach space. If £ : @ —> X* is a bounded
weak*-scalarly measurable function with the property that for each
o >0 there is a set E in X with u(\E) < a and such that the
set {<f,x>xE': | x| <1} is act in L _(4) then f

is p-Pettis integrable.

" Proof. 'Let” o > 0 and take such a set” E . '‘Define
T: X —> LM(F) by Tx = <f,x>xE and note that the hypothesis
guarantees that T(BX) .is weakly. precompact. "According to the factor-
ization construction [9] of Davis, Figiel, Johnson and Pelczynski, the
operator T factors through a Banach space containing no copy of 21 .
Because of the duality between spaces not containing 21 and dual spaces
with the weak Radon—Nikodﬁm property, we see that the adjoint operator
T* : (L (W))* —> X* factors through’' a space with the weak Radon-
Nikod§m property. In particular, the operator T* : Ll(p) —> X*
factors through a space with the weak Radon-Nikodym property. Accord-
ingly, there is a bounded Pettis integrable function g : § —> X*

such that
T*$ = Pettis - f g du
for every ¢ in Ll(p) . A moment's reflection shows that

<£,x>XE = Tx = <g,x> a.e.
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for each x din X . Because X 1is separable, it follows that fXE =g
almost everywhere and hence that fXE is Pettis integrable. A standard
exhaustion argument shows that f is itself Pettis integrable (see, for

example, [37, page 23]).

Theorem 3 : Let X be a separable Banach space and let K
be a compact Hausdorff space. If f : K——> X* is a bounded universally

scalarly measurable function, then £ is universally Pettis integrable.

Proof. Let o > 0 and fix a Radon probability measure U
on K . Let (xn) be a dense subset of the unit ball of X . For each
integer n there exists a set En in X such that u(Q\Eﬁ) < a/2n
and such that the restriction of <f,xn> to En is continuous. Let

o
E= n E ; then uU(\E) < o and the restriction <f,xn>|E of
<f,x:;1to E is continuous for each integer n . Because the sequence
(xn) is dense in the unit ball of X , the triangle inequality ensures
that <f,x>lE is continuous for all x in the unit ball of X .

Let A = {<f£,x>|E : ||x|| < 1} c C(E) and let M _(E) be
the set of all real-valued universally measurable functions on E
equipped with the topology of pointwise convergence. Let fn = <f,xn>lE
be a net in A and choose a subnet (xB) of (Xﬂ) that converges
weak* to some x*%* din X*% , If ¢ = x**fIE , then ¢ Dbelongs to
Mr(E) and fB(t) converges to ¢(t) for every t in E . Therefore

A is a relatively compact subset of Mr(E). By a direct application

of a theorem of Bourgain, Fremlin and Talagrand [5, Theorem 2F], every
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sequence in A has a pointwise convergent subsequence; i.e., this set
is weakly precompact in C(E) . Because the 214basis is not weakly
Cauchy, the set A can not contain a copy of the KI—baSis in C(E),
and since the inclusion map of C(E) into L&(K,p) is a contraction,
we see that the set {<f,x>xE : Ilklt 5_1}- contains no copy of the
zi-basis in the Lw(K,p) norm. Hence this set'.is weakly precompact in
Lw(K,P) . Appeal to Lemma 2 to complete the proof.

For a separable X , the easiest way to show that a bounded
function f : K ——> X* is universally Pettis integrable is to show
that x#%*f 1is Borel measurable for each x** in X** ., We shall do

this for the following well-known examples.

Example 4 : For this example we consider Hagler's "Murphy's
Pub Function" [10] on the unit interval. Let (Ah) denote the
sequence of dyadic intervals of [0,1] obtained by setting A1 = [0,1] ,
A, = [0.%] , Ay = [%,1] , A, = [0.%] , A5 = [%,%] , etc. Define
the function f : [0,1] — 2. by f(t) = (xA (t)) for each t in
[o,1] . "

Let ¢ be in the unit ball of 2 * and let ¢1 be the
countably additive part of ¢ and let ¢, be the purely finitely
additive part of ¢ . (Here ¢1 1is the countably additive measure on
the subsets of the integers given by ¢1(E) = z ¢({n}) for each

nek
subset E of the integers.) Now
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PCE(E)) = 2 (£(L)) + ¢2(£(E))

[}

I Ix, (©6Uah] + d2(£()) .
n=1 n

In Diestel and Uhl [10, page 43] it is shown that ¢2(£(*)) 1is
countably non-zero. Accordingly, the function ¢(£(*)) is Borel
measurable and therefore £ .is universally Pettis integrable by

Theorem 3.

Example 5 : Define the function £ : [0,1] —> L _[0,1]
by f(t) = X[O;t] for each t in [0,1] . Take u in the unit ball
of Lm[O,l]* and write U = u+ 1 where u+. and Y are the non-
negative measures in L _[0,1]* obtained from the Jordon Decomposition

Theorem. Fix a t in [0,1] and observe that

rl
<u,f(t)> = f(t) dp
‘ 0
rl + 1
= £(t) du’ - J £(t) dp
Jo 0
§ aut Jl d
=1 X u X u
Jo X10.t1 o X10.t]

vhao,end - wo,el) .

Because this latter expression is the difference of two monotonic
functions of t , we see that <U,f(*)> is Borel measurable. Therefore
f is universally Pettis integrable.

It would be gratifying to be able to remove the separability
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hypothesis in the statement of Theorem 3.  However, it is impossible
to dispense with it entirely because if X = 21[0,1] » then Phillips
has given an example [34] of a bounded function f : [0,1] — gm[o,l]
such that x**f is constant almost everywhere for each x** in X*%% |
and hence Borel measurable, but such that £ 1is not integrable with
respect to Lebesgue measure.

This leaves one obvious question unresolved: What happens
when X dis weakly compactly generated? Unfortunately we do not have

a satisfactory answer. The best we can offer is the following fact.

Corollary 6 : Let X be a WCG Banach space and let K
be a compact Hausdorff space. If f : K——> X* is a bounded universal-
1ly scalarly measurable function whose range is weak*-separable, then f

is universally Pettis integrable.

Proof. This is an easy consequence of Theorem 3 and a theorem
of Amir-Lindenstrauss (see Day [8, page 74]). Select a weak*-separable
subspace M of X* that contains the range of f . Use the theorem
of Amir-Lindenstauss to write X = Xi + X2 and X* = Xl* + X2* where
X1 is separable and M C Xl* . By Theorem 3, the function f is

universally Pettis integrable into Xl* and hence into X* ., This

completes the proof.

The best way to view Corollary 6 is in light of Pettis's

Measurability Theorem [10, II.1.2] which says that if £ 1is universally
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scalarly measurable and has a norm separable range, then f is universal-
ly Bochner integrable. Corollary 6 merely relaxes the norm separability
condition and guarantees (the weaker) universal Pettis integrability.
Before passing to the next section we pause to ask several
questions. First, .is the converse of L 2 true? Fremlin and Talagrand
have given an example [16] of a Pettis integrable function into &m for
which (as was pointed out to us by G. A. Edgar) the converse of Lemma 2
is not true. Their example, however, does not a priori rule out the
converse of Lemma 2 because their underlying measure is not a Radon
measure. It should be observed, though, that the global converse of

Lemma 2 fails, as the following example demonstrates.

Example 7 : We shall define a sequence of subsets of [0,1]

as follows: let A [0,%) ; if A.ln is the union of disjoint intervals

1

then define the set A.m+1 by

2m,—l

1 1
A - ([ai,ai +--—EQ U [bi’bi + m)) .

mtl
i=1 22 22

(see diagram next page)
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A |
0 1/2 1
A, |
0 1/4 1/2 3/4 1
A3 |
0 1/4 1/2 3/4 1
A,
0 1

m
Since )\(Am_l_l) = Zm‘/22 for each integer m (where A is

Lebesgue measure), we see that Y AA m+1) < @ , Therefore, the Borel-
Cantelli Lemma implies that the sequence (XA ) converges almost
everywhere to 0 . B
We now will show that the sequence ()(A ) 1is equivalent in
m

Lm[O,I] to the #,-basis by using an argument due to Rosenthal [42].

1
Let B = [0,1]\A and observe that
m m

ACn-A nn B)>0
meP © meN o
for all finite disjoint subsets P and N of integers. Let (a.k)
be a sequence of reals with only finitely many non-zero terms. We
must show that there exists a constant B , independent of the sequence

(a.k) , such that
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g ) lal < I} akXAka :

Without loss of generality, we may assume that 2 Iakl =1 . Let E
be an arbitrary null subset of [0,1] . Let P = {k : a > 0} and let

N = {k : a < 0} . By our observation above, we may choose

t, e (N N N B)H\E,
1 keP Ak keN k

t, € (N N N BM\E.
2 keN Ak keP k

Then

Loy (20 = kzp B (k) + kZN Xy (6)
) keP & kzP Iakl ]

Similarly, -} a, X, (t,) = -y =y | I Consequently,
& Ak 2 keN k keN &

Lagy p) - Tax, ¢ =Y la | =1,
so that either
1} akxAk(tl)l >% or |} a'kXAk(tZ)l >4 .

For either case we obtain
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sup |} ax, (©)] >%.
sup XakAk | >

Since E was an arbitrary null set, this last inequality shows that

13 90 o 2%

Finally, define a function £ : [0,1] —> 2., by
f(t) = (XA (t)) for each t in [0,1] . The first part of the
example shzﬁs that f dis scalarly measurable and essentially separably
valued. By Pettis's Measurability Theorem, therefore, the function f

is strongly measurable. Moreover,

1
fo [|E¢e) || dt <1<

and hence f is even Bochner integrable. The second part, however,
shows that the set {<f,x> : x € 21 R ||xl| f_l} is not weakly pre-

compact in L_[0,1] since it contains the sequence (XA ) .
n

As a preliminary to our second question, define a Banach
space X to have the universal Pettis integral property (UPIP) if
every bounded scalarly measurable function with values in X is
universally Pettis integrable. According to Theorem 3, if X is the
dual of a separable space, the X has the UPIP . What are the spaces
with the UPIP ? Do set-theoretic axioms play the important role in

the study of the UPIP that they play in the study of the stronger
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Pettis integral property (PIP) as found in Edgar [12, 13] and Fremlin-
Talagrand [16]?

We now turn our attention to applications of weakly pre-
compact subsets of Lw(p) in recognizing operators on Ll(p) that are
representable by Pettis integrable functions. First suppose that
T : Ll(p) —> X* is a Dunford-Pettis operator. Then the restricted
operator T : Lz(p) —> X* is compact [4] and therefore T* : X —> Lz(p)
is also compact. It follows easily from this observation that the
operator T : Ll(p) —> X* is a Dunford-Pettis operator if and only
if T* : X —> Lm(p) takes bounded sequences into sequences with
almost everywhere convergent subsequences. On the other hand, it is
well known [10, III.2.21] that T : Ll(u) ——> X* 1is Bochner represent-
able if and only if the set T*(BX) is almost relatively weakly compact
in Lw(p) ; i.e., for each o > 0 there exists a set E in I with
U(\E) < o such that T*.(BX)XE is relatively weakly compact. The
topological property in L (W) characterizing Pettis representable
operators from Ll(y) into X* should therefore fall somewhere between
weak convergence and almost everywhere comvergence. In light of Theorem 1

the next result should not be surprising.

Theorem 8 : An operator T Ll(p) —> X* 1is Pettis
representable if the set T*(BX) is almost weakly precompact in Lm(u) 3
i.e., for each o > 0 there is aset E in X with U(Q\E) < a

* .
such that T (BX)XE
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Proof. Let o > 0 and take such a set E . Define another
operator S : Ll(p) —> X* by S(f) = T(fxE) for each f in Ll(g) .
A moment's reflection reveals that S#*x = (T*x)xE for each x in X
and consequently S*(BX) is weakly precompact in L, (W) . As in the
proof of Lemma 2, the operator S*% : Ll(u)** ——> X* factors through
a space with the weak Radon-Nikodym property. In particular, the
operator S : Ll(u) —> X* is Pettis representable. A standard
exhaustion argument then shows that T is Pettis representable and

completes the proof.
We conjecture that the converse of Theorem 8 is also true,

at least for perfect measure spaces. To understand why this is

reasonable, examine the following diagram for an operator T : Ll(u) > X%,

T Bochner representable <—— T*(BX) almost rel. weakly compact

T Pettis representable < T*(BX) almost weakly precompact

T Dunford-Pettis <= T*(BX) "a.,e. relatively compact”

If (Q,IZ,y) dis a perfect measure space [15], then Stegall [16]
has shown that the vector measure F(E) = T(XE) associated with a Pettis
representable operator T on Ll(u) has a relatively compact range.

It follows that T is a Dunford-Pettis operator [see Observation 4.2 ,
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page 41]. This establishes the bottom left implication in the above
diagram for perfect measure spaces.

To see why the bottom right implication holds, observe that
Theorem 1 ensures thay every sequence in a weakly precompact subset of
Lm(u) (for an arbitrary measure § ) has an almost everywhere conver-
gent subsequence. Now find an increasing sequence of measurable sets
E such that p(hEn) = u(R) and such that T*(BX)XE is weakly pre-
compact in L _(u) . Then a routine diagonalization a:gument produces
an almost everywhere convergent subsequence of a sequence (fn) in
T*(BX) .

The global converse of Theorem 8 does fail, however. Let
f: [0,1] — 2w be the Bochner integrable function constructed in
Example 7 and define a Bochner representable operator T : L1[0,1] > R
by T(¢) = [: dp(t)f(t) dt for each ¢ in L1[0,1] . Then
T* : 21 —> L_[0,1] fixes a copy of 21 since T*em = X for each

m
integer m .

For operators into £ _, a special situation arises because
of the existence of coordinate functions. If T : Ll(u) —_—> Qm is
a bounded linear operator, it is easy to see that there is a uniformly

bounded sequence (gn) of functions in L _(w) such that
T$ = (I bg_ du)
Qq 1B

for each ¢ in Ll(u) . Now suppose that this sequence is almost

weakly precompact in Lm(u) ; that is, for each o > 0 there is a set
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E in I with u(Q\E) < o and such that the set '{anE :ne N} is
weakly precompact in L_(y) . Define a function g : @ —> 2. by

g(t) = (gn(t)) for each t in Q . Let (en) denote the usual unit-
vector basls in 21 . Since <g,en> =8 for each integer n , it is
clear that g is weak*-scalarly measurable. Now let o > 0 and take

a set E satisfying the above hypothesis. Observe that the set

A= {<g,ien>XE : n € N} is weakly precompact in L (1) . Therefore

the closed convex hull of A is also weakly precompact in L_(u) and
consequently the set {<g,x>XE t X € Es(ien)} is also weakly precompact
in L_(u) . The Krein-Mil'man Theorem now ensures that the set

{<g,x>XE : ||x|] < 1} is weakly precompact in L_(u) . Finally, appeal
to Lemma 2 to conclude that the function g is Pettis integrable and

then glance at the definition of g to see that T is Pettis represent-

able with kernel g . The next theorem summarizes this discussion.

Theorem 9 : Let T : Ll(u) —> & be a bounded linear

operator with coordinate functionals (gn) If the sequence (gn) is

almost weakly precompact in L_(M) , then T is Pettis resentable.

We conjecture that the converse of Theorem 9 also holds, at
least for perfect measure spaces (such as [0,1], for example). To
understand why, consider the corresponding situation for Bochmer

representable operators and Dunford-Pettis operators into & .
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Theorem 10 : Let T : Ll(p) —> & representation
T¢ = (J g dw)
Q

where (gn) is a uniformly bounded sequence in Lm(u) .
(a) The operator T 1is Bochner representable if and only
if the sequence (gn) Lw(u)
(b) The operator T is a Dunford-Pettis operator if and

only if the sequence (gn) is relatively (morm) compact in Ll(u)

Proof. A quick calculation reveals that T#*x = 2 X 8 for

each x in the ball of 21 . Therefore T*(B is contained in the

21)
closed convex hull of {ign :n e N} . If the sequence (gn) is
almost relatively weakly compact in L_(u) , then the set T*(le) is
also almost relatively weakly compact in Lm(u) and consequently T
is Bochner representable; but (gn) is clearly contained in T*(le),
so the converse implication also holds. This establishes part (a).

For part (b), recall that if T is a Dunford-Pettis operator,
then T* maps bounded sequences in 21 into sequences with almost
everywhere convergent subsequences. Therefore each subsequence of (gn)
has an Ll(p)—convergent subsequence; that is, the sequence (gn) is
relatively compact in Ll(p). Conversely, if (gn) is relatively
compact in Ll(p) , then as above, the set T*(le) is also relatively

compact in Ll(u) . Therefore T* maps bounded sequences into

sequences with Ll(u)—convergent subsequences, which in turn have almost
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everywhere convergent subsequences. Hence T 1is a Dunford-Pettis

operator and this completes the proof.

The following chart summarizes the previous discussion.

T:LW)—> 2 T$ = (fg ¢g du)

T Bochner representable <—> (gn) almost rel. weakly compact in L.

T Pettis representable == (gn) almost weakly precompact in L,
(*)
T Dunford-Pettis <= (gn) relatively compact in L1

(*) for perfect measure spaces

Let f : (2,Z,) ——> Y be a Pettis integrable function into
a Banach space Y and let I be a sub-c-algebra of X . A Pettis
integrable function g : (Q,T',u) —> Y is said to be a Pettis condi-
tional expectation of £ with respect to the o-algebra I if g is

scalarly TI'-measurable and if

g du = Pettis - J f duy

Pettis - f
E

E

for each set E in T . Our last theorem in this chapter provides a

sufficient condition for a bounded dual-valued Pettis integrable function
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to have Pettis conditional expectation. It naturally makes use of

weakly precompact sets.

Theorem 11 : Let £ : (R,Z,0) —> X* be a bounded Pettis
integrable function. If the set {<f,x> : ||x|| < 1}
compact in L_(u) , then £ has Pettis conditional expectation with

respect to all sub-o-algebras of I

Proof. Let T be a sub-0-algebra of % and define an

operator T : X —> Lm(F,u) by

Tx = E(<f,x>|T)

for each x in X . Since the set {<f,x> : ||x|| < 1} contains no
copy of the ll-basis in Lm(Z,u) and the conditional expectation
operator E 1is a contraction from Lw(Z,u) into Lm(P,u) » we may
conclude that T(BX) contains no copy of the 21—basis in L _(T,w) .
Consequently T(BX) is weakly precompact in Lw(F,u) and an appeal
to Lemma 8 produces a Pettis integrable kernel g : Q,I'yp) —> X*

for the operator T#%* : Ll(F,u) —> X* . Then
<g,x> = Tx = BE(<£,x>|) a.e

for every x in X . Therefore
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J <gsx> du-=‘f E(RE,x>|T) du =  <f;%> du
B “B B

for every set B in I and hence

g du = Pettis - I £ du

Pettis - I
B

B
for every set B in T This shows that g is a Pettis conditional

expectation of f for the o-algebra T

Unfortunately, the converse of Theorem 11 is false, since
Example 7 exhibits a Bochner integrable function £ : [0,1] — L
which thus has conditional expectations, -but for which the sequence

(<f,em>) = (xA ) is equivalent to the ll—basis.
o .



CHAPTER 4
Weak Radon-Nikodym sets
in dual Banach spaces
Shortly after the appearance of Rosenthal's signal theorem
on spaces containing %1 » @ number of additional characterizations of
such spaces appeared. They were discussed in Chapter 2 and are collected

below for reference.

Theorem 1 : Each of the fol statements characterizes
Banach spaces X that contain no copy of 21

(a) (Haydon) Every x** in X** is universally (weak*-)
measurable and satisfies the barycentric formula on the unit ball of X*
equipped with the weak*-topology.

(b) (Pelczynski) Every bounded linear operator T L1 —> X%
is a Dunford-Pettis operator.

(¢) (Musial-Janicka) The dual X* possesses the Radon-
Nikod§m property for the Pettis integral.

(d) (Saab and Saab) The restriction of each x** in X*%
to each non-empty weak*-compact subset of X* has a point of weak#*-
continuity.

(e) (Riddle and Uhl) The dual X* does not contain a
Rademacher tree.

(£) (Haydon) Every weak*-compact convex subset of X* is
the norm-closed convex hull of its extreme points.

(g) (Saab and Saab) Every non-—empty bounded set in X* is

weak*-scalarly dentable.
39
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The goal of this chapter is to localize these theorems by
showing that statements (a) through (g) above localize to provide
equivalent conditions for absolutely convex weak*-compact subsets of
dual Banach spaces. By and large the work is based on an analogue of
a factorization theorem of Stegall that says, roughly, that weakly pre-
compact sets are to sets with the weak Radon-Nikodym property as GSP

sets are to sets with the Radon-Nikodym property.
§1 The Factorization Theorem

Throughout this section let T : X —=> Y be a fixed bounded
linear operator between the Banach spaces X and Y .

In [48] Stegall proved that T(BX) is a GSP set in Y if
and only if T*(BY*) is a Radon-Nikodym set in X#%* ; that is, for every
finite measure space (R,Z,n) and every bounded linear operator
S : Ll(u) —> X* for which S(XE/u(E)) belongs to T*(BY*) for every
set E in I of positive measure, the operator S 1is represented by
a Bochner integrable function. In this section we shall show that an
analogous statement can be made for weakly precompact sets in Y and
weak Radon-Nikodjym sets in X* .

Let us first fix some terminology. A subset K of X is
called a weak Radon-Nikodjm set [respectively, a set of complete
continuity] if for every finite measure space (Q,XZ,4) and every bounded
linear operator 8§ : Ll(u) —> X for which S(XE/u(E)) belongs to

K for each non-null set in X , the operator S 1is represented by a
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Pettis integrable function with values in K [respectively, .is a
Dunford-Pettis operator]. A weak Radon-Nikodym set .is also said to have
the weak Radon-Nikodjm property.

There is an alternative description of sets of complete con-
tinuity in terms of vector measures. "It is based on the following well-

known observation [10, pages 92-95 and page 161]. °

Observation 2 : Any one of the following statements about
an operator S : Ll(p) ——> X implies all the others.

(a) The operator S is a Dunford-Pettis operator.

(b) The restriction of $S to Lw(y) defines a compact
operator from Lw(p) to X.

(c) The vector measure F defined for E in- 1 by

F(E) = S(XE) has relatively norm compact range.

The average range of a vector measure F : I —> X is

defined to the set

t: Ee X, uwiE) > 0}

The observation ensures that a set K 1is a set of complete continuity

if and only if for each finite measure space (2,Z,4) and each py-contin-
uous vector measure F : I —> X of bounded variation with average
range contained in K , the measure F has a relatively norm compact

range. The global property in this vector measure context has been
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studied by Musial in [27].

Haydon [21] showed that if a Banach space X contains no
copy of 21 » then every x** in X** is universally measurable and
satisfies the barycentric formula on the unit ball of X* eqipped with
the weak*-topology. This means that if Y is a Radon measure on the
unit ball of X* equipped with the weak*-topology, then there is an

element xu* in X* such that

X**(XH*) = x&* (x%) dp(x*)

BX*

for all x** din X** ., 1In the terminology of the Imntroduction, this

just means that the identity operator I : (B

X% weak*) — > X* ig

universally Pettis integrable. Using this fact, Janicka [24] showed
that if 21 does not embed in X , then BX* is a weak Radon-Nikodym

set. Replacing B by a weak*-compact convex subset C of X* in

X*

Janicka's proof yields the following lemma.

Lemma 3 : Let X be a Banach space and let C be a weak*-
compact convex subset of X#% such that every x** in X** is univer-
sally measurable and satisfies the barycentric formula on C equipped

with the weak*-topology Then C is a weak Radon-Nikodym set.

The next theorem is an analogue of a theorem of Stegall [48,

Theorem 1.12] and forms the basis for most of this chapter.
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Theorem 4 : Each of the fo statements about an
operator T : X —> Y implies all the others.
(a) The set T(BX) .

(b) The operator T factors through a Banach s ace that
contains no copy of 21

(c) The set T*(BY*) is a weak Radon-Nikod set.

(d) The set T*(BY*) is a set of complete continuitv.

(e) The adjoint operator T* factors through a Banach

space with the weak Radon-Nikodjym rty.

Proof. (a) = (b) . This follows from the factorization
construction of Davis, Figiel, Johnson and Pelczynski. According to
[9, Lemma 1(xii)], if T(BX) is weakly precompact, then the unit ball
of the space constructed in [9] is also weakly precompact. In light of
Rosenthal's Theorem, this means that T factors through a space con-
taining no copy of 21 .

(b) = (¢) . By the preceding remarks and Lemma 3, it suffices
to show that the identity map 1 : (T*(BY*), weak*) ——> X* is univer-
sally Pettis integrable. Towards this end, suppose T admits the

factorization
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where the Banach space Z contains no copy of 21 . Then we have
T*(BY*) = R*(S*(BY*)) . By Haydon [21], the identity map from the unit
ball of Z* with the weak*-topology into Z* dis universally Pettis

integrable. Consider the following factorization

(5%(Byy)» weal®)  © (2%, ||+ )
Rl* R*
(T*(By) > weak®) T (®%, ||+ )

where Rl*(z*) = R*(z*) for each 2z* in S*(BY*) and I and J are
the respective identity maps. Observe that Rl* is continuous. Also,
J is universally Pettis integrable and thus R*J is universally Pettis
integrable.

Let U be a Radon probability measure on (T*(BY*), weak#*) .
Using the fact that (S*(BY*)’ weak*) is compact and Rl* is onto,

one can easily produce a Radon probability measure U omn the space

(S*(B

Y*)’ weak*) such that Rl*(U) =y [1, page 90]. But R*J = IRl*

is U-scalarly measurable and thus I is Rl*(U) = j-scalarly measur-

able. Moreover, R*J = IRl* is vU-Pettis integrable. Employ a change-

of-variables formula to see that I is Rl*(U) = p-Pettis integrable.
(c) = (d) . Let (R,I,4) be a finite measure space and

let S : Ll(u) — > X* be an operator for which S(XE/u(E)) belongs

to T*(BY*) for every E in I of positive measure. Since 21 has

the Schur property, we may assume without loss of generality that U
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is non-atomic. To show that S 1s a Dunford-Pettis operator, it suffices
to show that the vector measure F(E) = S(XE) defined on X has rela-
tively norm compact range. Towards this end, take a sequence (En) of
measurable sets. There exists an isomorphism R mapping the o-algebra
generated by the sequence (En) onto the o-algebra B of Borel subsets
of [0,1] with Lebesgue measure. Define a vector measure G : B ——> X¥
by G(E) = F(B—I(E)) . Then the weak Radon—Nikodﬁm set T*(BY*) contains
the average range of G , so the measure G can be represented as an
indefinite Pettis integral. Since the unit interval with the Borel
subsets is a perfect measure space, Stegall's Theorem [16, Proposition 3J]
ensures that G has a relatively norm compact range. Therefore F(En) =
G(B(En)) has a convergent subsequence in the dual X* , and so we have
shown that F has a relatively norm compact range.

(d) = (a) . Suppose T(BX) is not weakly precompact and
use Rosenthal's Theorem to find a sequence (Txn) that is a copy of the
21-basis (en) . Let Yo denote the closed linear span of the
sequence (Txn) . Then the definition S(Txn) =e gives rise to an
isomorphism S from Yo onto 21 . Let (en*) be the usual & -basis

and set yn* = S*(en*) . Then yn*(Txk) = Gk n (Kronecker delta).

3
If r is the kth Rademacher function, then the definition of a function

k
. - %
fn : [0,1] > Y0 by

|| ||—1 E
£ () = ||s r (*)y, *
n k=1 k k

produces a martingale (fn) with respect to the dyadic partitions of
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the unit interval [0,1] . Now the operator Ro : Li[O,l] _ Yb*
given by Rb(g) = l%m f gfn dA (A 1is Lebesgue measure on [0,1]) has
a norm—-preserving lifting [29, Theorem 2] to an operator R : Ll[Q,l] > Y*;
i.e., 1i*R = R0 , Wwhere 1 : Yo ——> Y 1is the natural injection, and
IIRII = IIRoll . Then if m denotes the dyadic partition of [0,1]
into intervals of length 1/2" , the functions
R
5,(*) = ] ')\(z.ﬁ) X ()

Aem
n

form a martingale from [0,1] dinto Y* satisfying
fn(-)y = gn(-)y for all y ¢ Y0

sup ||£ ||, = sue |lg |l -
n n

Therefore BY* contains gn(Q) , and so (T*gn) is an X*-valued

martingale with T*gn(Q) contained in T*(B However, computing

vx) -

the Pettis norm of T*gn+1 - T*gn » we obtain

sup { [ |<x**,T*gn+1 - T*gn>| ax ¢ | |x*x|| < 1}

| v

I I<T7"gn+1 - T.kgn’xn+1>| dA

J l<fn+l N fn’TXn+1>| dA

-1 -1
ST [ Tepgq ) ax = 1Is{IT .
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Therefore (T*gn) is not Cauchy in the Pettis norm. This means that
the operator W : Ll[O,l] ——> X* given by W(f) = 1%m f f(T*gn) dA
is not a Dunford-Pettis operator [4]. Since W(XE/X(E)) does belong
is not

to T*(B for each dyadic interval E , we see that T*(B

Y*) Y*)

a set of complete continuity.

(b) => (e) . The dual of a space without any copy of 21
has the weak Radon-Nikodjym property by Janicka's theorem [24] .

(e) = (a) . Suppose T(BX) is not weakly precompact. Let
(gn) be the martingale constructed during the proof of the penultimate
implication. If T%* factors through a space with the weak Radon-
Nikodym property, then (T*gn) converges in the Pettis norm [28].
However, we saw that (T*gn) is not even Cauchy in the Pettis norm,
and consequently condition (e) must fail.

This completes the proof.

Any weak*-compact absolutely convex set K in the dual X%
of a Banach space X can be written in the form K = T*(BY*) . To see
this, just take Y to be the space C(K) of continuous functions on
K and let T : X——> Y be the evaluation operator defined by
Tx(x*) = x*(x) . Because the closed unit ball of C(K)* is just the
weak*-closure of the convex hull of the unit point masses, it is not
difficult to see that T*(BY*) = K . This observation will allow us
to use Theorem 4 to study arbitrary weak*-compact absolutely convex

subsets of dual spaces.

The following corollary is the main result of this section.
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In subsequent sections we shall find additional characterizations of

weak*—compact subsets that are weak Radon-Nikodym sets.

Corollary 5 : An absolutely convex weak*-compact subset of
a dual space is a weak Radon-Nikodym set if and only if it is a set of

complete continuity.

Proof. This is an immediate consequence of the preceding

observation and Theorem 4.

Corollary 6 : An absolutely convex weak*-compact subset of
a dual space is a weak Radon-Nikodym set if and only if it has the weak

Radon-Nikodym property for the unit interval.

Proof. Let K be an absolutely convex weak*-compact subset
of a dual space X* and let (Q,L,1) be an arbitrary finite measure
space. Let S : Ll(p) —> X* be an operator with S(XE/u(E)) in K
for each set E of positive measure. Let F : I —> X* be the vector
measure defined by F(E) = S(XE) for each E in X . To show that
K is a weak Radon-Nikodym set, it suffices by Corollary 5 and Observa-
tion 2 to show that F has a relatively norm compact range. Towards
this end, let (En) be a sequence of sets in I . Because 21 has
the Schur property, we may assume without loss of generality that u
is non-atomic. Then there exists an isomorphism B mapping the o-algebra

generated by the sequence (En) onto the o-algebra B of Borel subsets
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of the unit interval. Define a vector measure G : B —> X* by

G(E) = F(B_I(E)) Then the set K contains the average range of G

Because K has the weak Radon-Nikodym property on the unit interval,

Stegall's theorem (as in the proof of (¢) => (d) in Theorem 4) ensures
that G has a relatively norm compact range. Consequently, the

sequence F(En) = G(B(En)) has a convergent subsequence in X¥ .

Corollary 7 Let K be a weak*-compact absolutely convex
weak Radon-Nikodym subset of a dual space X* For every bounded linear
operator S from a Banach space Z into X the set S*(K) is a weak

Radon-Nikodiym set in Z*

Proof. Write K T*(BY*) for an operator T : X —> Y .

By Theorem 4, the operator T factors through a space not containing

a copy of 21 . But S*(K) (TS)*(BY*) and TS clearly factors
through the same space containing no copy of 21 as does T . Another

appeal to Theorem 4 reveals that S*(K) is a weak Radon-Nikodym set.

§2 Measurability, continuity and weak Radon-Nikodym sets

In the previous section we saw that if the identity map on
a weak*-compact convex subset of X* is universally Pettis integrable,
then that set has the weak Radon-Nikodym property. Having seen earlier
how to recognize when a function if universally Pettis integrable, we

now combine these results toward obtaining additional characterizations
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of weak Radon-Nikodym sets.

Theorem 8 : TFor a separable Banach space X and a weak*-
compact convex subset C of X* , the following statements are equivalent.
(a) The set C has the weak Radon-Nikodym property.

(b) The identi map I : (C, weak¥*) —> X* is universa
scalarly measurable.

(c¢) The identity map I : (C, weak*) —> X* is universally
Pettis integrable.

(p') Every x#** in X** is universally measurable and

satisfies the barycentric formula on (C, weak¥)

Proof. Because X 1is separable, Theorem 3.3 guarantees the
equivalence of (b) and (c) . That (c¢) implies (a) is just Lemma 3.
Thus all we need to show is that (a) implies (c). Let U be a Radon
probability measure on (C, weak*) and let I be the o-algebra of
Borel subsets of (C,weak*) . For every function £ in Ll(C,u) ,
define S(f) in X* by letting S(f) be the Gelfand integral of the

Function £(+)I(*)

C —> X* ; that is,
S(f)x = I £<I,x> du
C
for each x in X . Then S : Ll(C,u) — > X* defines a bounded linear

operator with S(XE/u(E)) belonging to C for each E in I of

positive measure. Because C is a weak Radon-Nikodym set, there exists
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a Y~Pettis integrable function g : C —> X* such that for each f in
Ll(C,u) we have S(f) = Pettis - IC gf du . Therefore, for each x in

X and each E in ¥ we see that

I <I,x> du = S(XE)X = I <g,x> du .
E E

Because X is separable, these last equalities imply that I =g
U-almost everywhere and hence that I dis p-Pettis integrable. This

completes the proof.

Theorem 8 yields a Choquet type representation with the
Pettis integral. Let C be a weak*-compact convex weak Radon-Nikodjm
subset of the dual X* of a separable space X , and let x* be an
element of C . Choquet's Theorem [7] ensures the existence of a Borel
probability measure U on C which is supported on the extreme points

of C and satisfies

x*(x) = J y*(x) du(y*) for every x € X ;
C

that is, x* is the Gel'fand or weak*-integral of the identity map

I : (C, weak¥) —> X* with respect to the measure U . By Theorem 8,

however, the map I is p-Pettis integrable and therefore =x* is

actually represented as a Pettis integral with respect to u ; i.e.,

x*k (x*) = J xk%(+) dy for every x**% g X¥* |
C
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For an arbitrary Banach space X , the conclusion of Theorem 8
still holds if C is absolutely convex. Before showing this, however,
we pause to consider the following concept introduced by Saab and Saab

in [45].

Definition : Let A be a weak*-compact subset of X% We
say that A has the scalar point of continuity property (SPCP) if
for each weak*-compact subset M of A and each x** in X** , the

restriction of x** to (M, weak*) has a point of continuity.

It was shown by Saab and Saab [45] that a Banach space does
not contain a copy of 21 if and only if every weak*-compact set in X*
has the scalar point of continuity property. The next theorem localizes
their result and localizes Haydon's theorem as mentioned in the discus-

sion before Lemma 3.

Theorem 9 : Let X be a Banach space and A a weak*-compact
absolutely convex subset of X* . Then each of the following statements
about A implies all the others.

(a) The set A has the weak Radon-Nikodym property.

(b) The set A has the scalar point of continuity property.

(¢) The identity map I : (A, weak*) —> X* is universally
scalarly measurable.

(d) The identity map I : (A, weak*) —> X* is universally

Pettis integrable.
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(d”°) Each x**% in X#** is universally measurable and

satisfies the barycentric formula on (A, weak¥)

Proof. As in the proof of Corollary 5, we may write A = T*(B)

where B denotes the unit ball of C(A)* and T : X —> C(A) 1is the
evaluation mapping. Then each of the statements (a) and (b) is equiva-
lent to the condition that the operator T factors through a Banach
space not containing 21 by Theorem 4 and by Theorem 12 of Saab and
Saab [45]. Hence (a) and (b) are equivalent.

Now suppose (a) holds. As mentioned above, T can be factored
through a Banach space not containing 21 . Reread the proof of the
implication (b) => (c¢) in Theorem 4 to see that statement (d) holds.
Clearly (d) implies (c).

Towards showing that (c) implies (b), observe that the func-
tion <I(*),x> is continuous on (A, weak*) for each x in X .

Thus the same argument as in the proof of Theorem 3.3 shows that each
sequence in the set {<I('),x> : llxll 5_1} has a pointwise convergent
subsequence. Let (xn) be a sequence in the unit ball of X and take

such a subsequence. Then for each z* in B,
* = T*%z% = < k% >
z (Txn) T*z (xn) I(T*z ),xn
has a convergent subsequence since T#*z¥ belongs to A = T*(B) .

Therefore the set T(BX) is weakly precompact, so that A = T*(B) has

the weak Radon-Nikodym property by Theorem 4. This completes the proof.
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Corollary 10 : A weak*-compact convex subset of an absolutely
convex weak* t weak Radon Nikodym set inherits the weak Radon-

Nikodym property from the larger set.

Proof. This is an immediate consequence of Theorem 9 and

Lemma 3.

Odell and Rosenthal [31] showed that a separable Banach space
X does not contain a copy of Ql if and only if every x*%* in X*%%
is a limit of a sequence of continuous functions on the unit ball of X#*
equipped with the weak*-topology; that is, if and only if every x#*%
is a Baire-1 function on (BX*’ weak*) ., Their result, coupled with
that of Janicka [24], showed that the dual X* of a separable Banach
space X has the weak Radon-Nikodym property if and only if every x¥*%
in X** gatisfies the same Baire-1 criteria. In our next theorem we
combine our previous results to yield a localization of these ideas.
First, however, we need a lemma that will allow the passage from convex

sets to absolutely convex sets.

Temma 11 : Let X be a separable Banach space and let C1

and C. be two weak*—compact convex subsets of X* that have the weak

2
Radon-Nikodjm property. Then the set A = C1 - C2 has the weak Radon-

Nikodim

Proof. The set A1 =C; x¢C, has the weak Radon-Nikodjym



55

property in the space X* X X* , Let T : X* X X* —> X* be defined
by T(x*,y*) = x* - y* . Then T is weak*-to-weak* continuous and
T(Al) = A, Let x** be in X** and let | be a Radon probability
measure on (A, weak*) . By [l, page 90], there is a Radon probability
measure U on A1 such that T() = u . By Theorem 9, the function
x**T 4is U-measurable on A1 , and therefore x** is T(V) = p-measur-
able on A . We have thus shown that the identity map I : (A, weak¥)

——> X* 4is universally scalarly measurable. Apply Theorem 9 again to

conclude that A has the weak Radon-Nikodym property.

Theorem 12 : Let X be a separable Banach space.
the following statements about a weak*-compact convex subset
implies all the others.
(a) The set C has the weak Radon-Nikodjm property.
(b) The set C has the scalar point of continuity ty.
(c) For every =x*% in X** , the restriction of x** to
(C, weak*) is a Baire-1 function.
(d) For every =x** in X** , the restriction of x** to

(C, weak*) is universally measurable.

Proof. To see that (a) implies (b), we can suppose that 0
is in C . Let A be the absolutely convex set C - C . Since A
has the weak Radon-Nikodjm property by Lemma 11, it has the scalar
point of continuity property by Theorem 9. Therefore C C A also

has the scalar point of continuity property.
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The Baire Characterization Theorem yields the implication
(b) = (c¢) since C 1is weak*-metrizable. That (c) implies (d) is

clear. Now invoke Theorem 8 to finish the proof.

It is clear that (b) does not imply (c) in the above theorem
if X is not separable. Let X = co(P) for an uncountable index set T.
Because 21 does not embed in X , the unit ball of X* = Rl(F) has
the scalar point of continuity property [45]. On the other hand,
suppose x** g lw(F) is a Baire-1 function when restricted to the unit
ball of EI(F) . Then Odell and Rosenthal showed [31] that x** is
actually the weak*-limit of a sequence from co(T) and therefore is
countably supported. However, there are many elements in 2¥(F) that
are not countably supported. Consequently, statement (c) must fail for
the unit ball of Rl(r).

Recently, Elias Saab has shown that statements (a) and (b)
in Theorem 12 are equivalent for weak*-compact convex subsets of
arbitrary dual spaces. His key step involved using a compactness
argument to show that the absolutely convex set K - K has the weak
Radon-Nikodym property if the weak*-compact convex set K has the weak
Radon-Nikodym property. He was then able to show that the assumption
of absolute convexity could be replaced by ordinary convexity in

Corollaries 5,6,7 and 10, and in Theorem 9.
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§3 The geometry of weak Radon-Nikodym sets

In this section we present several geometric characterizations
of weak Radon-Nikodjm sets in terms of tree structures, extreme points
and a dentability criterion due to Elias and Paulette Saab [45].

We saw in Chapter 2 that dual Banach spaces lacking the weak
Radon-Nikodjm property provide fertile ground for the growth of

Rademacher trees. The next theorem localizes this result.

Theorem 13 : For an operator T : X ——> Y , the set T*(BY*)
is a weak Radon-Nikodym set if and onlv if it does not contain a

Rademacher tree.

Consequently, a weak*-compact absolutely convex subset of
X* 1is a weak Radon-Nikod¥m set if and only if it does not contain a

Rademacher tree.

Proof. Suppose K = T*(BY*) contains a G&-Rademacher

tree (xn*) . Define the usual martingale associated with a tree

[ef. 10, V.1.7], i.e.,
= *
1~ *17X[0,11
= *
£y = %™ 0,51 T *37K[4,1]

etc. Define an operator S : Ll[O,l] —> X* by S(g) = 1%m f gfn di
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(A 1is Lebesgue measure on [0,1]) and observe that if r is the nth

Rademacher function, then
sl = 1] rg, ol > 6 -

Since the sequence (rn) is weakly null in Ll[O,l], we see that the
operator S is not Dunford-Pettis. However, the set K does contain
S(XE/X(E)) since it contains the range of fn for each n . Invoke
Theorem 4 to conclude that K = T*(BY*) is not a weak Radon-Nikodym
set.

Conversely, suppose K = T*(BY*) is not a weak Radon-Nikodjm
set. Invoke Theorem 4 and Rosenthal's Theorem on weakly precompact sets
to find a sequence (Txn) in T(BX) that is a copy of the ll—basis
(en) . Let Yo be the closed subspace determined by the sequence
(Txn) . Then S(Txn) =e defines an isomorphism from Yo onto 21 .
Let (en*) be the co—tree described earlier, but now considered as
a tree in the sequence space lw . Let yn* = IISII_IS*(en*) . Then

(yn*) is a tree in B By the lifting property of bounded trees

Y % °
o
in dual spaces (this follows easily from a compactness argument, ct. [6])

there exists a tree (zn*) in B such that zn*(y) = yn*(y) for

Y*

all y in Y0 .

We claim that (T*zn*) is a Rademacher tree in K . To see
this, first note that for each k = 1,2,3,... , letting i =k + 1,

the element e, of the Ql—basis satisfies en*(ei) = (-—1)n for

n= 2k,...,2k+1—1 . Taking each of the following sums from n = 2k
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to n = 2k+1—l , we obtain
Y GDPrez #[] > | ] D T*z ()|
_ =l ¢ 4\
= 1IsHTY T D% %o ]
= sl T enPen?|
k -1
=27 {s||™" .
Hence (T*zn*) is a ||S||_1—Rademacher tree in K

The second statement follows from the first statement and

the observation following Theorem 4. This completes the proof.

A quick glance at the beginning of the above proof shows that
any Banach space containing a bounded Rademacher tree fails to have
the weak Radon-Nikodym property. Since the isomorphic copy of a Rade-
macher tree is again a Rademacher tree, this observation immediately
shows that neither ¢, mor Ll[O,l] can be embedded in a Banach space
having the weak Radon-Nikodym property, a fact previously proved by
Janicka [24] and by Ghoussoub and Saab [19].

In 1976, Haydon [21] showed that spaces not containing 21
have fairly strong extremal properties in their duals. Since such
duals also have the weak Radon-Nikodym property, the next theorem might

be considered as a localization of Haydon's result.
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Theorem 14 : Each of the following statements about an
operator T : X —=> Y implies all the others.

(a) The set T*(BY*) is a weak Radon-Nikodjym set.

(b) Every weak*-compact convex subset of T*(BY*) is the
norm-closed convex hull of its extreme points.

(c) For every weak*-compact subset W of T*(B , the

)
weak*-closed convex hull of W coincides with the norm-closed convex
hull of W

Consequently, a weak*-compact absolutely convex subset K
of X* is a weak Radon-Nikodym set if and only if every weak*-compact
subset of K is the norm-closed convex hull of its extreme points.

Proof. (a) = (b) . Let K = T*(B and let C be a

Y*)

weak*—compact convex subset of K . Suppose C # norm-cl conv(Ext C).
By the proof of [21, Proposition 3.1], there exists a non-empty subset

S of C , a subsequence (xn) in BX , and a constant & > 0 such that
. . . :
) Iail < sup {]| } ais(xi)l s € S}

for all finitely non-zero sequences (ai) of reals. Fix s in S and

observe that s = T*y* for some y¥* in BY* . Then
1T agsepl = |3 aymayxeep | < [T oo |

Accordingly
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&7 la,| < |11 a; (x|

i.e., the sequence (Txn) is a copy of the ll—basis. Consequently
T(BX) is not weakly precompact. Appeal to Theorem 4 to see that
T*(BY*) 1s not a weak Radon-Nikodym set.

(b) = (¢) . This follows immediately from the observation
that if W is a weak*-compact subset of K , then weak*-cl conv(W) C K
and ext(weak*-cl conv(W)) C W [8, V.1.3].

(c) = (a) . Suppose T*(BY*) is not a weak Radon-Nikodym
set. Use Theorem 4 and Rosenthal's Theorem to find a copy (Txn) of
the Ql—basis in T(BX) . Let Xo denote the closed subspace spanned
by the sequence (xn) and let 1 ; X0 ——> X be the natural inclusion
map. In addition, let To denote the restriction of T to the sub-

space Xo . Note that since there is a § > 0 satisfying
s113 a;x; 11 < 6% la,] < 11T amx || = |7 (¥ agxp) ]

for all finitely non-zero sequences (ai) of reals, the operator To
has a bounded inverse on its (closed) range Yo . Therefore its
adjoint TO* : Yo* —> Xo* also has a bounded inverse.

Let V : Yo —> ¢[0,1] be a quotient map on the separable
space Yo , and let Ko denote the image of the set of unit point
masses on [0,1] under the action of the adjoint operator V* . Then

Ko is a weak*-compact subset of Yo* that has distinct weak*-closed

and norm-closed convex hulls (see [21]). Since weak*-cl conV(Ko)
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is weak*-compact and To* is weak*-to-weak* continuous, we have

To*(weak*—cl conv(Ko)) = weak*-cl conV(To*KO)
In addition, since To* has a norm continuous inverse,
T % - ' = - *
o {(norm-cl conv(Ko)) norm-cl conv(To Ko)

Therefore mnorm-cl conV(To*Ko) # weak*-cl conv(To*Ko)

Let j : Yo —> Y denote the natural inclusion map. Pick
a weak*-compact subset M of Y* such that j*M = Ko Let W = T*M
and observe that i*W = TO*Ko . Then i*(weak*-cl conv(W)) =
weak*—cl conv(To*Ko) and i*(norm-cl conv(W)) C norm-cl conV(To*Ko) s
so consequently weak*-cl conv(W) # norm-cl conv(W) . A suitable
scalar multiple of W produces a weak*-compact subset of T*(BY*)
with distinct weak*-closed and norm-closed convex hulls, as required.

This completes the proof.

In [45] Saab and Saab introduce the following dentability

criterion.

Definition : A bounded subset A of X* 1is said to be
weak*-scalarly dentable if for every o > 0 and every x** din X#%%

there exists a weak*-open slice

S = S(A,x,B) = {x* € A x*(x) > sup y*(x) - B}
y*eA
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for some x in X and some B > 0 such that the oscillation of x**

on S satisfies

sup {|x**(x*) - x**(y*)| : x*,y*x e S} < a

They then proceed to show that every non—empty bounded subset
of X* is weak*-scalarly dentable if and only if for every weak*-compact
subset M and every x** in X#%* , the restriction of x** to M
equipped with the weak*-topology has a point of continuity. A close
examination of their proof, though, reveals that it works inside any
weak*-compact convex set; i.e., for a weak*-compact convex set K ,
every non-empty subset of K is weak*-scalarly dentable if and only
if K has the scalar point of continuity property. By Theorem 9,
however, this latter condition characterizes absolutely convex weak*—
compact sets with the weak Radon-Nikodjm property.

With the help of a standard separation argument, it is easily
seen that a non-empty bounded set A is weak*-scalarly dentable if and
only if for every o > 0 and every x** in X*% there exists an

x* in A such that

(*) x* ¢ weak*-cl conv(A {y* e A : Ix**(x*) - x**(y*)l < al)

For suppose this latter condition (*) holds. Then one can find an x

in X such that
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x*(x) > £ = sup {y*(x) : y* € A and [x**(y%) - x**(x*)| > a} .

Let B = £ - x*(x) and observe that if y* belongs to the weak*-open

slice S = S(A,x,B) , then y*(x) > £ . Therefore

sup {|x**(y*) - x*%(z%)| : y*,z* € S} < 2a

and hence A 1is weak*-scalarly dentable.
Conversely, suppose A 1is weak*-scalarly dentable. Then
if o >0 and x** belongs to X** , there exists a weak*-open slice

S = S(A,x,B) such that

sup {|x**(x*) - x**(y*)| : x*,y* € S} < o/2 .

Let x** be in S . Then S 1is a subset of the weak neighborhood
W= {y* g X* : |x**(x*) - x**(y*)l <o} of x* . Because S is weak*-
open and has convex complement, we obtain
A\W C A\S
==> conv(A\W) C conv(A\S) C conv(A)\S
—> weak*-cl conv(A\W) C (weak*-cl conv(A))\S

and therefore we see that =x* does not belong to weak*-cl conv(A\W)

We obtain as an immediate corollary that a bounded set A
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in X* is weak*-scalarly dentable if and only if its weak*-closed
convex hull is weak*-scalarly dentable. To see this just mimic the
proof for the ordinary dentable case (see, for example, [10, V.10(i)1]).

It is worth remarking here what happens if various parts of
this dentability condition are changed. If, for example, one takes the
weak closure (or equivalently the norm closure) in condition (*), then
the Bishop-Phelps Theorem insures that every non-empty subset of X*
satisfies the new condition (as was pointed out to us by Elias Saab).
This immediately shows that weakly compact sets in dual spaces are
weak¥*-scalarly dentable, a result that is not surprising since such sets
are actually dentable [10, V.10(ii)]. Likewise, if one requires the
conditions in the definition to hold only for every x in X rather
than for all elements in X** , then again all non-empty subsets have
the corresponding property. Finally, if ome requires that the norm
diameter of the weak*-open slice be less that o , then the property
is called weak*-dentability and every non-empty bounded set has the
property if and only if X* has the Radon-Nikodym property (see Namioka
and Phelps [30]).

Recall that a point x* in a subset C of X* 1is called
a weak*—strongly exposed point of C 1if there exists an x 1in X of

norm one such that
x*(x) = sup {y*(x) : y* € C}

and x * converges to x* in norm whenever xn*(x) converges to x*(x)
n



66

for sequences (xn*) in C . Weak*-strongly exposed points play an
important role in the geometry of Banach spaces. It follows from
Namioka and Phelps [30], for example, that a dual space X* has the
Radon-Nikodym property if and only if each weak*-compact convex non-
empty subset of X% contains a weak*-strongly exposed point. A set
containing such an exposed point is also weak*-dentable.

Let us say that a point =x* in a subset C of X* is a
weak*-weakly exposed point of C if there exists an x in X of norm

one such that

x%(x) = sup {y*(x) y* € C}

and xn* converges weakly to x* whenever xn*(x) converges to x*(x)
for sequences (xn*) in C . Do weak*-weakly exposed points play an
analogus role for the weak Radon-Nikodym property in dual spaces as
weak*-strongly exposed points play for the Radon-Nikodym property? It
is easy to see, for example, that if every weak*-compact convex subset
of X* has a weak¥*-weakly exposed point x* , then X* has the scalar
point of continuity property since every x** din X** 1is weak*-
continuous at x* . As we have seen earlier, this implies that X%*
has the weak Radon-Nikodym property. Does the converse hold or does
the existence of weak¥*-weakly exposed points actually give us a stronger
property (for example, the Radon-Nikodym property)?

The last theorem summarizes the discussion of this chapter.

The interested reader should keep in mind the remarks in the Introduction
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when comparing this theorem with Theorem 1.

Theorem 16 : Each of the following statements about an
absolut convex weak*-compact subset K of X* implies all the others.

(a) Every x** in X** is universally measurable and
satisfies the barycentric formula on (K, weak*).

(b) Every bounded linear operator T : Ll(p) —> X* satis-
fying T(XE/u(E)) e K for u(E) >0 is a Dunford-Pettis operator.

(c) The set K has the Radon-Nikodym for the Pettis
integral.

(d) The restriction of each x** in X*%%
weak*-compact subset of K has a point of weak*-continuity.

(e) The set K does not contain a Rademacher tree.

(f) Every weak*-compact convex subset of K is the norm-
closed convex hull of its extreme points.

(g) Every non-empty bounded subset of K is weak*-scalarly

dentable.



CHAPTER 5

The Bourgain property and applications
§1 The Bourgain property

In the previous chapters we have seen that the family
{<£(+),x> : ||x|] < 1} plays a strong role in determining Pettis
integrability for a bounded scalarly measurable function £ from Q
into a dual space X* . We continue this approach in this chapter,
but, rather than viewing such families as subsets of Lm(u) s, We now
consider them simply as families of real-valued functions on § .
A property of real-valued functions formulated by J. Bourgain [3] is

the cornerstone of our discussion.

Definition : Let (Q,Z,4) be a measure space. A family
¥ of real-valued functions on § is said to have the Bourgain property
if the following condition is satisfied: for each set A of positive
measure and for each o > 0 , there is a finite collection F of sub-
sets of A of positive measure such that for each function f in VY,

the inequality sup f£(B) - inf f(B) < o holds for some member B of F.

Let f : § —> X* be a bounded scalarly measurable function.
Fix x** 1in X** and use Goldstine's Theorem to find a bounded net
(XB) in X that converges to x** in the weak*-topology. Let XE*

be the Gel'fand integral of £ over a set E in I and note that

68
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*k(x %) = 11 * = 11

X (xE ) 1im Xp (XB) lim I <f,x8> du .
B B ‘E

Now if we could take the last limit underneath the integral sign, then

we would have

x**(xE*) = J lim <f,x8> duy = J x**f dy ,
E B E
and this would prove that f is Pettis integrable. Unfortunately, it
is not always possible to take the limit underneath the integral sign
but it is always possible to do so if the net (XB) can be replaced by
a sequence. The next theorem, which is due to Bourgain [3], essentially

allows us to do this for some functions £ .

Theorem 1 : If (Q,Z,p) is a finite measure space and V¥

is a family of real-valued functions on § satisfying the Bourgain
the pointwise closure of ¥ satisfies the Bourgain

each element in the pointwise closure of V¥ is

measurable, and
(iii) each element in the pointwise closure of Y is the

almost everywhere pointwise limit of a sequence from VY

Proof. The proof of (i) is completely straightfoward.

Towards verifying (ii) and (iii), take a function g belonging to the
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pointwise closure of ¥ and an ultrafilter U on Y that has g as

a cluster point. For A in-X and o > 0 , let
Y(Aza) = {£ e ¥ : sup £(A) - inf £(A) < al} .

It follows from the definition of the Bourgain property that if A has
positive measure and o > 0 , then there exists a subset B of A of
positiﬁe measure with Y(B;a) Belonging to U . Now for each a > 0 ,
use Zorn's Lemma to find a maximal set Pa of mutually disjoint sets
of positive measure such that Y(Aj;a) €¢ U for each A € Pa . Note

that each Pa is necessarily countable. Moreover,

(a) the set O\ LJPa has measure 0 for each o > 0 ,
and

(b) if F is a finite subset of positive reals and Qa is
a finite subset of Pu for each o in F , then g belongs to the
pointwise closure of N N Y(Az0) .

aeF AeQa

The maximality of Pa yields condition (a), and condition (b) follows
because g dis a cluster point of U .

. . d
Now let (Am,n)n be an enumeration of Pl/m-’ and set

[o 0] 0
m=1 n=1 ™0

By condition (a), we have H(Q\B) = 0 . Pick some point U in each

£}
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set A and define
m,n

fm ) nzl g(UL)IH’1'1))(Am,n
Each fm is measurable and a quick computation using (b) shows that the
sequence (fm) converges to g uniformly on B . Therefore g is
measurable.
Unfortunately, the functions fm may not belong to Y . To

establish (iii), therefore, use condition (b) to pick for each integer

m m
m a function h_ belonging to N N ¥Y(A, 31/i) such that
n i=l n=1 1.0

(o ) - eloy DI < 1/4

for each 1 < i,n <m . The triangle inequality now ensures that
(hm(w)) converges to g(w) for each w in B . This completes the

proof.

Tt is worth remarking here that a uniformly bounded family
¥ of real-valued functions has the Bourgain property if and only if

the following condition holds:

(*) for each non-null measurable set A in 2 and for each pair a <b
of real numbers, there is a finite collection F of non-null measurable
subsets of A such that for each £ in V¥ , either inf £(B) > a or

sup £(B) < b for some member B of F .
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Indeed, the Bourgain property for ¥ with o = b-a clearly implies
property (*); conversely, the Bourgain property for Y can be obtained

by finitely many successive applications of property (*).
§2 Pettis integration and the Bourgain property

In this section we study the family {<f,x> : ||x|| < 1} for
a bounded function f : § —> X* and use the Bourgain property to
determine the Pettis integrability of the function. We shall say that
f has the if the family {<f,x> : ||x|| < 1} has
the Bourgain property. The main result is the following sufficient

condition.

Theorem 2 : A bounded function f : § ——> X* that has the

Bourgain property is Pettis integrable.

Proof. While no a hypothesis about the measurability
of f is assumed, the Bourgain condition does show immediately that
<f,x> is measurable for each x in X . Fix x** in the unit ball

of X*%* and fix a set E in X . Let x;* be the Gel'fand integral

of £ over E , so that

¢)) XE*'(.X) = f <f,x> dy for all x e X .
E

We must show that x**f is measurable and that
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xkk (x_%) f x**f dp .
E
E
Accordingly, let o > 0 and define
Vo= {<fx> ¢ |]x]|] <1, [<x** - x,xE*>| <al}.

Goldstine's theorem ensures that x**f 1lies in the pointwise closure
of ¥ . Since VY has the Bourgain property, the function x**f is
measurable by Theorem 1(ii), and statement (iii) of the same theorem
shows that x**f is the almost everywhere limit of a sequence <£,xn>

from Y ; that is,

(2) 1lim <f,xn> = x**f a.e. , where
n
3) |X**(XE*) - XE*(Xn)| < o for each n

It now follows from equations (1), (2), (3) and the Dominated Convergence

Theorem that

| e (x_*) - f x*x*f dy| < a .
E E

Since o was arbitrary, we conclude that xE* is the Pettis integral

of f over the set E .

In Chapter 3 we saw that a bounded function £ taking values
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in the dual of a separable space is Pettis integrable if the family
{<f,x> : lell 5_1} is almost weakly precompact in Lw(u) . A

natural question arises concerning how Theorem 2 relates to this earlier
result. Before answering this, we first establish some additional facts

about the family {<f,x> : ||x]|]| < 1} and the Bourgain property.

Lemma 3 : Suppose £ : @ ——> X* and g : Q@ —> X* are

equal almost everywhere. Then f has the Bourgain property if and only

if g has the Bourgain property.

Proof. Let N be a null set such that f(w) = g(w) for
all w not imn N . Clearly both <f,x> and <g,x> have the same
supremum and infimum on the set A\N for any set A of positive

measure. The conclusion now follows immediately.

For the rest of this chapter we shall assume that (,XZ,u)
is a finite separable measure space. This means that there is a
sequence (Wn) of finite partitions of { consisting of sets in I
satisfying:

(1) each member of w

is contained in a member of T
n+l n

(i.e., ﬂn+1

(2) the union of the o-algebras generated by the partitions

refines ﬂn), and

ﬂn is dense in ¥ .

For example, if Q = [0,1] and § is Lebesgue measure on

the Borel sets £ , then the dyadic partitions of [0,1] would satisfy
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these assumptions; Let Zn denote the o-algebra generated by ﬂn and

oo

let o= U I
n=1

Lemma 4 (Bourgain) : Suppose A 1is a subset of  with

positive measure and 0 < a < 1 . Then there is an integer m and a

measurable subset B C A with p(8) > (1-0)U(A) such that for every
uniformly bounded by 1 real-valued martingale (gﬁ,Zﬁ) and for every
n>m,

(1) ess inf g(A) < inf gh(B) + a

(ii) ess sup g(A) > sup g (B) - a

where g is any almost everywhere limit of the .sequence (gn)

Proof. Choose a,b >0 sothat 1 -oa/4<a<l,b<l,
and 1 + a < 2b . Choose an integer m and a set A1 in Zm such

that W(A A A)) < (1-b)”u(a)  Now let
I={Eeco:uEnNA\A) > (1-a)u(E)}

and set W=UTI . By writing W as a countable union of disjoint
sets from I , we can easily see that (W N AI\A) > (1-a)uw) . If
we let C =AW , then

u(a, . A)

pc) =1 - u@W >1 - —1—— > 1 - (1-b)uca)
-a

and
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HE 0 ANA) < (1-a)u(E)

whenever E dis in 0 and ENC# @ .
We claim that the integer m and the set B = A r\Al ncC

satisfy the stated conditioms. First of all, notice that

u(B) > uCA 0 A - u([0,11NC) > uA N A - (1-DIu(A)
> A - (1-b)%uA) - (1-bHuCA) > au(a)

> (1-o)u(a) .

We next verify condition (i) (the argument for (ii) follows by replacing
g with —gn). Suppose n >m and B 1is any number satisfying

inf gn(B) <B<1+o0o . Since gy is constant on the members of M.
there is some interval I in m such that I N B is non-empty and

g, < B on I . Moreover, we have' I C A1 since I N A1 is non-empty
and A, is a union of sets in m . "But because I NC # @ , we

1

see that
WI NA) = u(I) - W NANA) > ap(I) .

Now suppose ess inf g(A) > B + & . Because - is the conditional

expectation of g with respect to the o-algebra Zn-’ we have

Bu(-I)>J g, du = g du = gdu+f g du
1 1 INA I\ A
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> (Bta)u(T NA) - u(\A) = (Bro+L)u(I N A) - u(1)
> (Btotl)ap(I) - u(I) .

Hence (Btotl)a -~ 1 < B, and this implies the contradiction B > 3 - o .

Therefore ess inf g(A) < 8 + o , and the proof is complete.

Let £ :  —> X* be a bounded weak*-scalarly measurable

function and define an X*-valued martingale (fﬁ’zn) by

fn(') = z XA(')

where G4IA f du 1is the Gel'fand integral of f over the set A .
Without loss of generality we may assume that ||f]] <1 pointwise.
Then for each x in X , the sequence (<fn,x>,2n) is a uniformly

bounded by 1 real-valued martingale with

lim <fn,x> = <f,x> a.e. ,
n

where the exceptional null set may, of course, vary with x
Lemma 5 : Let X be a separable Banach space. Then £

has the property if and only if the family {<fn,x> tn €N,

x| < 1} has the Bour property
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Proof. Let (xm) be a dense sequence in X . For each

integer m there exists a null set Nm satisfying

lim <fn(w),xm> = <f(w),xm>

for each ® mnot in Nm . Because the sequence (xn) is dense, it

follows easily that for each x in X,

lim <f_(w),x> = <£(w),x>
n

C 8
=

for each w that is not in the null set N = -
m=1

Suppose first that the family {<fn,x> tneN, ||x|| <1}

has the Bourgain property. When the ball of X#* is equipped with the
weak*-topology, the space of functions from { into BX* is compact

for the topology of pointwise convergence. Therefore, there exists a
pointwise weak*-cluster point g : § —> X% of the sequence (fn) .
This means that the family {<g,x> : ||x|| < 1} belongs to the point-
wise closure of the family {<fn,x> :neN, ||x|| <1} . Consequently,

the function g has the Bourgain property by Theorem 1(i). A moment's

reflection, however, shows that <f(w),x> <g(w) ,x> for each w not

in N and for each x in X . Hence £ g almost everywhere. Now

invoke Lemma 3 to see that £ has the Bourgain property.
Conversely, suppose that the family {<f,x> : |1x]] < 1}
has the Bourgain property. Let A be a set of positive measure and

let a<b . Choose a >0 such that a+a<b-a. There exist



79

non-null subsets A~1""’Ak of A such that for each x in the ball

A
i

According to Lemma 4 , there is for each set Ai an integer

of X , either. sup, <£,x><b~-o0a or inf, <f,x> > a+ o for some 1i .
5 .

m

5 and a non-null subset Bi of Ai such that

(a) ess ian. <f,x> < infB, <fn,x> + a
i i

(b) ess sup Ai<f,x> > supBi<fnl,x> = a

for every x in the ball of X and for every n > m, . Let-

m = max {mi

and note that there exists an Ai such that either

:1§i<k-}. Let n>m, let x be in the ball of X

b-a> sup, <f,x> > ess sup, <f,x>
i i

> sup, <f x> -a
Z supg i :
i
or

at+acx< ian‘ <f,x> < ess ian. <f,x>
i i

< i < > .
1nfBi fn,x + a

That is, either b > sup, <f ,x> or a < inf  <f ,x> . -Therefore the
- Bi n - Bi n
sets B-l""’Bk will work for the set A for the family

{<fn,x> ta>m, Hx” < 1} . However, the functions fl""’fm'—l
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are just simple functions, so that for each i = 1,...,m-1 there exists
a set Ci on which fi is constant and u(A N Ci) >0 . Thus the

sets Bl""’B C ﬂA,...,Cm_

k>l 1

{<f ,x>:neN, |1x]| < 1} has the Bourgain family.

MA will work to show that the family

We are nots ready to answer the question raised earlier by
showing that the Bourgain property for a function £ falls between
almost weak precompactness in Lm(u) and Pettis integrability, in the

sense of the following theorem.

Theorem 6 : Let X be a separable Banach space and let

£ : Q—> X* be a bounded weak*-scalarly measurable function. If
the family {<f,x> : ||x|]| < 1} 4s almost act in L_(W) ,
then f has the B property, and hence f is Pettis integrable.

Proof. Observe first that the family {<£,x> : ||x]|| <1}
has the Bourgain property if and only if for each a > 0 there exists
aset E in ¥ with U(Q\E) < o such that the family {<f,x>XE :
||x|| < 1} has the Bourgain property. To see this, take a set A in
¥ with n(A) = o > 0 and apply the Bourgain condition to the non-null
set E NA , where E satisfies the above hypothesis. Without loss
of generality, therefore, we may delete the "almost" and assume that
{<£,x> : ||x|| < 1} is weakly precompact in L_(1) . We will also
assume that ||f|| <1l.

By Lemma 5 it suffices to show that the family {<fn,x> :
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neN, ||x|| 5_1} has the Bourgain property. Suppose it does not.
Then an argument due to Bourgain [3] produces a sequence (xn) in the
ball of X , a system (A.n m),n € N,1 <m< 2n, of sets of positive

measure, and constants § < B satisfying:

(1 A'n+1,2m.—1 < Ah,m and An+1,2m < An,m 3
(2) <f(w),xn+1> <8 if we An+1’2m_1 3

(3) <f(w),xn+1> >B if we An+1’2m

We sketch the inductive step in the construction. ILet A € I and
a < b be reals for which property (%) (page 71) can not be obtained.
For each m=1,...,2n Lemma 4 provides an integer km and a subset

Bm G An m

of positive measure such that for k z_km and x in the
£

ball of X,

i < > < 1q < >
ess 1an f,x __1nfB fk,x + o

n,m m
ess sup, <f,x> Z_supB <fk,x> - 0O
n,m i
where o > 0 has been chosen so that a+ a <b - 0o . Set
j = max {km :1<m< 2"} and for each m=l,...,2" chose a subset
Cm of Bm that has positive measure and is contained in a member of

the partition ﬂj . The negation of the Bourgain property produces

some integer k and x in the ball of X such that

n+l
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>>b for all m=l,...,2"

k> %+l

i <
1nfCm fk’xn+1> < a and supcm<f

Since fk is constant on each member of Me s it is clear that k > j

and therefore

ess 1an <f,xn+1> f_lnfB <fk’xn+1> +o<a+a=2§
n,m m
ess sup, <f,xn+1> 2 supg <fk’xn+1> -—a>b-a=28
n,m m
—_ n -
for each m=1,...,2 . Comsequently, the sets An+1,2m—1 {w e Ah,m
< > < = . N
f(w),xn+1 §} and An+1,2m {w e An,m : <f(w),xn+1 > B8} have
positive measure. 2n—1 2n—1
Let 0 = U A and E = U A for each integer
n =1 n,2m-1 n =1 n,2m

n . Then the sequence of pairs (On,En) is independent in the sense
of Rosenthal [42]. More, however, is true in this case, for we actually

have

(ngg On " ngg Eny\N *9
for every pair of disjoint finite non-empty subsets G and B of
integers and for every null set N . Rosenthal's argument (see [42]
or see page 29) therefore shows that the sequence (<£,xn>) is a
copy of the ﬁl—basis in the L_(u)-norm, rather than in just the
supremum norm. Since this contradicts the assumption that the family
{<f,x> : ||x|| < 1} 1is weakly precompact in L (1) , we conclude that

the family {<fn,X> :neN, ||x]] <1} has the Bourgain property.
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It is impossible to .dispense entirely with the separability
assumption in Theorem 6. As we have seen earlier, the family
{<f,x> : ||x||‘§ 1} associated with Phillips's function from [0,1]
into £ _[0,1] is actually relatively norm compact, and hence weakly
precompact in L_(1), but can not have the Bourgain property since £
is not Pettis integrable. We can exhibit this directly, however, with-

out invoking Theorem 2.

Example 7 : Under the assumption of the continuum hypothesis,
Sierpinski constructed a subset B of the unit square. [0,1] x [0,1]
with the properties:

(1) for each t, in [0,1], the set {s : (s,to) € B}
is countable;

(2) for each s, in [0,1], the set {t : (s,»t) ¢ B}
1s countable.

Phillips's function f : [0,1] —> lm[O,l] is defined. [34]
by £f(s)(*) = XB(s,-) for each s in [0,1] . We shall show that the
family {<f,x> : x ¢ 2,10,11 , ||x||] < 1} fails the Bourgain property.

Let Dl""’Dn be arbitrary non-null subsets of [0,1] .
For each 1i=1l,...,n choose a point s in D, and note that the set

i

K= u {t: (Si’t) ¢ B}

is countable. Hence we can choose distinct numbers tj € Dj\K for

each j=l,...,n . Thus (Si’tj) € B for all 1 <1i,j <n . Define
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an element x in the unit ball of 21[0,1] by x(tj) = 1/n for

j=l,...,n and x(t) = 0 otherwise. For each i=l,...,n , observe that

n
<f(s;) x> = jZl Xp(systdx(tg) =1 .

This shows that

sup,, <f,x> =1 for i=1l,...,n .

i
n
On the other hand, the set A= U {s : (s,tj) e B} is also countable.
j=1
Now choose Si* in Di>A' for each i=1,...,n to see that

n
* = * - = .
<f(si ), x> .Zl XB(si tj)x(tj) 0 ;
that is,
infD <f,x> =0 for i=l,...,n .
i

Therefore the Bourgain property fails for this function.

To conclude this section we present several examples that
lend credibility to the conjecture that for bounded dual-valued functions,
the Bourgain property is equivalent to Pettis integrability. For this
to be true, of course, it is necessary that £ have the Bourgain

property if and only if g has the Bourgain property whenever
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x**f = x**g almost everywhere for all x** in X*%%* (where the
exceptional set may depend on x**), Lemma 3 ensures that this holds

at least when X 1is separable.

Example 8 : All strongly measurable functions into X* have
the Bourgain property. In particular, all Bochner integrable functions
in X* have the Bourgain property. .

To see this, suppose £ : § ——> X* is strongly measurable

and let (Sn) be a sequence of simple functions for which

lim ||£ - snll =0 a.e.

n
Let A be a measurable subset of £ with p(A) >0 , and let o >0 .
Egorov's theorem ensures the existence of a set B with W(Q\B) < u(a)
such that the sequence (sn) converges uniformly to £ on B . Choose
an integer n so that |[f(w) - sn(w)ll <.0/4t for all w in B .
Since u(A NB) >0 we can find a set C on which s, is constant
and for which p(A NB NC) >0 . Let x be in the ball of X . Then

for all Wy 50 in A NB NC , the triangle inequality shows that

2

|<f(w1),x> - <f(w2),x>| <alt+0+alsk=al2.

Therefore
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<f,x> - 1

SUP, pcS anﬂBﬁC<f’X> <a

for all x in the ball of X

The next three examples present well-known bounded universally
Pettis integrable functions on [0,1] . In each case we shall show that
they satisfy the Bourgain property with respect to any Radon probability

measure on [0,1] . We shall need the following technical lemma.

Lemma 9 : Let | be a Radon probability measure on [0,1]
and let A be a Borel subset of [0,1] with n(a) >0 . If u({th=0
for each t in A , then for any integer p there is a dyadic partition

of [0,1] containing at least p I ..,Ip such that

1°°
B(A N Ii) >0 for i=l,...,p .

Proof. The result clearly holds for p =1 . To finish the
proof by induction on p , it suffices to prove the result for p = 2
for a set of the form A NI , where I is a dyadic interval and
p(A NI) >0 . Towards this end, bisect I into two equal subintervals
I1 and 12 . If uan Il) >0 and u(A N 12) > 0 , then we are done.
If not, then for one of the intervals, call it E1 , we must have
HA N El) = y(A N I) . Now bisect E1 into equal subintervals. Again,
either A intersects both intervals in positive measure, in which case

we are done, or for ome of the intervals, call it E2 , we have

WA NE,) = u@A NE) =u(ANnI) .
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If the bisecting does not stop, continue in this way to
produce a decreasing Sequence (En) of intervals whose lengths go to
0 and that satisfy u(A N En) = u(A NI) for each integer n . The

o0
first condition, however, implies that F&(A ) En) is either empty
or a singleton. Hence u(A N En) conve:;es to 0 , which clearly
contradicts the second condition. Therefore, at some stage we must

bisect En into two dyadic intervals that intersect A in sets of

positive measure, thereby concluding the proof.

Example 10 : Consider Hagler's function from Example 3.4

given by
£(t) = (X, (£)) e &,
n

for each t in [0,1] . In that example we showed that £ 1is
universally Pettis integrable on [O0,1] .

Let U be a Radon probability measure on [0,1] . Suppose
A is a non-null subset of [0,1] and a < b are real numbers. If
u({t}) >0 for some t in A , then for the set B = {t} and for
every x in the ball of 21 , either supB<f,x> <b or infB<f,x> > a
We may therefore assume that u({t}) =0 for every t in A .

Choose an integer p > 1/(b-a) . By Lemma 9 there is a
dyadic partition T and there are p distinct intervals Il”"’Ip

in m with up(A N Ii) >0 for each i=l,...,p . Suppose there

exists an x = (En) in the ball of 21 such that
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<f,x>>Db ,
i

iannI <f,x>< a,
i

for each i=l,...,p . Fix an 1 between 1 and p . There are ti‘

t;' in A AI; such that <f(ti_) »x> > b and <f(t;’) sX> < a . Let

- ) i
M ={n:A em for some k>m and tj € At ,
N, ={n:A €m for some k >m and ti € Al
i n k - 2 n

Next observe that

<@, =8+ § £,
L neM, o
1
<E(tD),x> =B+ ) &,
2 nt—:Ni n

where R is the sum of all En for which both ti and t; lie in

A em for k <m . Therefore
n k

} g, ) E,>b-a.
neM, neN
i i
Because an interval in ﬁk for Kk >m can intersect at
i = NN, =
most one Ii in m , we see that Mi rle ¢ and Ni NJ @

for distinct 1 and j . Comsequently,
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p(b-a) < § ) € ) £y
i=1 neMi neN i

< Llgl 21 <plo-a)
n=1

This contradiction shows that for each x in the ball of 21 , either
sup, 1 <£,x> <b or inf, . <f,x>>a for some i . Therefore the
1 >

i
family {<f,x> : ||x|| 5_1} has the Bourgain property with respect to U.
Example 11 : Consider the function from Example 3.5 given by

£(8) = X 47 © Lol0s1]

fof each t in [0,1] . In that example we showed that £ is univer-
sally Pettis integrable on [0,1] .

Let u be any Radon probability measure on [0,1] , let
A be a measurable subset of [0,1] with u(A) >0 , and let a<b
be real numbers. As in Example 10, we may assume that p{th =0
for each t in A .

Choose an integer n such that n(b-a) > 1 and by Lemma 9
choose a dyadic partition m such that there are n distinct intervals
Il""’I in m with u(A N Ii) >0 for each i=l,...,n . Suppose

n

there exists an x in the ball of Ll[O,l] with

SUP) 1 <f,x> >b ,
i

ianFEi<f’X> <a,
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for each i=1,...,n . Then for each .i=1,.,..,n there are points

si and ‘ti in AN Ii such that

S
1 xdy>b

0

rti
' xdy < a.,

‘0

Without loss of generality assume sy > ti (if not, just relabel the

two points). Then

s
J 1 x| du>b -a
1

for each i=1l,...,n , so that

1 n (s,
n(b-a) > 1 z_f |x] au > 1} f t x| du > n(b-a) .
0 i=1

t,
i

Since this last inequality is blatantly false, it must happen that

either <f,x> < b or inf <f,x> > a for some i . This

ANL
i

shows that f has the Bourgain property with respect to U .

Example 12 : Let {et : t € [0,1]} be an orthonormal basis
for the nonseparable Hilbert space 22[0,1] . Define a function
£f: [0,1] — 22[0,1] by £(t) = e, - Each x in the unit ball of

12[0,1] can be written in the form
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o
x=) Bnet
n=1

[s o]
where the tn are distinct numbers in [0,1] and 2 an <1l.
n=1

Accordingly,

<Eox> = ] BaX{e 3
n=1 n

Hence x*f = 0 except on a countable set for every x* in (12[0,1])*
= 22[0,1] ,» and therefore f 1is scalarly measurable with respect to
every Radon probability measure on [0,l] . Since 22[0,1] is
reflexive, this shows that f is universally Pettis integrable.

Let Y be any Radon probability measure on [0,1], let A
be a subset of [0,1] with u(A) >0, and let a < b . As before,
we may assume that p({t})) =0 for every t in A . Choose an
integer m > max {I/a2 . 1/b2} (if either one of a or b is 0,
then ignore it in choosing m ). With the help of Lemma 9, choose m

disjoint measurable subsets D .,Dm of A with u(D15 >0 for

1°e"

[+
each 1 . Let x = z be in the ball of 22[0,1] .

B e
n=1 n tn

Case 1 : b >0 . Suppose

b < sup <f(t),x> = sup 2 an{tn}(t)

teDd N teDd i n=1

for each i=l1,...,m . Then for each i there is some integer n,

for which Bn >b . Observe that the integers =n
i

ee.,l are
1’ >“m
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distinct since the sets Dl""’Dm are - disjoint. Therefore

This contradiction shows that supy, <f,x> < b for some i
i

Case 2 : b < 0 (hence a < 0). Now suppose

a > inf <£(t),x> = inf ) an{tn}(t)

teD, teD, n=1
i i

for each i=1,...,n . Then there are distinct integers nl,.;;;nm

for which Bn <a<0 for each i . This gives rise to the contra-
i

diction

B

B 2 > ma2 >1

1> 1oetz ) ey
1

n=1 i

I £~

thereby showing that infD <f,x> > a for some i
i
We have thus shown that for each x in the ball of 22[0,1],
either infD <f,x> > a or sup,) <f,x> < b for one of the sets Di
i ' i

Accordingly, the function £ has the Bourgain property with respect

to U .
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§3 Pettis representable operators and the Bourgain property

Let S : Ll(p) —> X* be a bounded linear operator.
Recall our separability assumption that guarantees the existence of an
increasing sequence (ﬂn) of finite partitions of § that generate
the o-algebra - Z. For each integer n define a function fn from Q

into X* by

AE:TI'n nda)

The sequence (fﬂ’zn) forms a uniformly bounded X*-valued
martingale. Moreover, for each x in the ball of X and for each

o]

set A in U Z- , we have
n
n=1

1lim I <fn,x> du = S(xA)x
n ‘A
since the limit is eventually constant. Therefore
1lim J <f ,x>g du = S(g)x
n
n ‘Q

for each x in the ball of X and for each g in a dense set, and

hence the limit exists for each g 1in Ll(u) .

We shall say that the operator S has the Bourgain property
if the family {<fn,x> t:n€eEN, lell f_l} has the Bourgain property.

The main result of this section is the following theorem.
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Theorem 12 : An operator S : Ll(u) —> X* with the

Bourgain 1s Pettis representable.

Proof. Because the sequence (fn) is pointwise uniformly
bounded in X* , we can choose a pointwise weak*-cluster point
f:Q—> X* of (fn) . Let x be in the unit ball of X . Because
(<fn,x>) is a uniformly bounded real-valued martingale, there is a
function hx : @ —> R such that <fn,x> converges to hx almost
everywhere. However, the function <f,x> is a pointwise cluster
point of the sequence (<fn,x>) and therefore <f,x> = hx almost
everywhere. The Dominated Convergence theorem now ensures that

S(g)x = 1lim J <fn,x>g dy = <f,x>g du

n

for all g in Ll(u) . Hence f 1is a Gel'fand derivative of S .
On the other hand, the function f has the Bourgain property because
the family {<f,x> : llxll < 1} 1lies in the pointwise closure of the
family {<fn,x> :neN, ||x|]|] <1}, so that f is Pettis integrable
by Theorem 2. This easily implies that f dis a Pettis derivative of
the operator S and completes the proof.

Theorem 13 : Let T : X —> Y be a bounded linear operator
for which the set T(BX) is weakly precompact. If S : Ll(u) —> X*
is an operator that satisfies S(XE/u(E)) £ T*(BY*) for every E in

% of positive measure, then § has the property
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"Proof. Without loss of generality we may assume that
[|T]] <1 . Hence [|S]| <1 . Let (f,-L)) be the martingale
associated with the operator S . We must show that the family
{<fn,x> :neN, ||x|]| <1} has the Bourgain property.

Let £ :  —> X* be a pointwise weak*-cluster point of
the sequence (fn) and observe that f takes its values in T*(BY*) .
Suppose that the family {<fn,x> :neN, ||x|] <1} fails the
Bourgain property. Reread the proof of Theorem 6 to see that there
exists a sequence (xn) in X for which t<f,xn>) is a copy of the
Ql-basis in Lw(u) ; that is, there exists § > 0 such that for all

finitely non-zero sequences (ai) of reals

62 lail i Hz ai<,fsxi>||°o .

But for each ®w in § , there is some y* in the ball of Y* such

that f£(w) = T*y* , from which it follows that

11} a;<tx >, < |1} 2 (mx)]]

Therefore (Txn) is a copy of the Rl-basis and this contradicts

our assumption that T(BX) is weakly precompact.

Corollary 14 : I1f S : Ll(u) —> X* 1is an operator for

which S*(BX) is weakly precompact in Lw(u) , then S has the
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Notice that Theorems 12 and 13 combine to give an alternative
proof of the implication (a) => (¢) 1in the Factorization Theorem 4.4 .

We do not know if the converse of Theorem 12 is true. An
affirmative answer, however, would also give an affirmative answer to

the following technical questiomn.

Question : Suppose S : Ll(p) —> X* is known to be Pettis
representable. Suppose, in additiom, that S(XE/u(E)) belongs to a
fixed weak*-compact convex subset K of X* for each set E of
positive measure. Does it follow that S has a Pettis kernel taking

its values in K ?

Before leaving this section, we briefly consider the situa-

tion for an operator taking values in an arbitrary Banach space X .

Proposition 15 : Let S : Ll[Q,l] —> X be a bounded

linear operator and define the martingale fn : [0,1] —> X by
S(Xy)
£ () = X, ()
Aem u(a)

If the family {<x*,fn> :neN, ||x*]| <1}
then S is Pettis representable into the second dual X#¥* , and

consequently S is a Dunford-Pettis operator into X

Proof. Let Q : X —> X*%* be the natural embedding of
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X dinto its second dual and set S

1 =@ : L[0,1] —= x*x . A

moment's reflection shows that the corresponding X**-valued martingale
(gn) for S1 satisfies g, = an for each n . Accordingly, the
family {<an,x*> t:meN, le*ll <1} = {<x*,fn> tmeN, le*ll < 1}
has the Bourgain property. By Theorem 4, ;he operator S1 = QS 1is
Pettis representable, which establishes the first claim. The second
claim follows immediately from Observation 4.2 and Stegall's theorem

[16, Proposition 3.J] that Pettis representable vector measures on

perfect measure spaces have relatively compact ranges.

A partial converse to Proposition 15 fails in the sense that
the associated family {<x*,fn> :neN, ||x¥]] <1} for a Dunford-
Pettis operator S : Ll[O,l] ——> X need not have the Bourgain property,

as the following example demonstrates.

Example 16 : We consider Bourgain's example of a Dunford-
Pettis operator into <, that is not Pettis representable into £ _ .
Accordingly, the associated family of martingales must fail the
Bourgain property.

For each integer n , let Hn denote the finite collection

of all possible unions of up to n intervals from the dyadic partition

<o

mo Let (Am) be an enumeration of W I and observe that
n=1

1i§ A(Am) =0 . Define S : Ll[O,l] _— <, by

s¢ = (IA b a7

m



98

Then 8§ is a Dunford-Pettis operator since the coordinate functions
Xy € L_[0,1] -are L1[0,1]—re1ative1y compact (see Theorem 3.10).
m
Suppose g : [0,1] —> & = co** :is a Gel'fand kernel

of S ; that is,
5(P)x* = I <g,x*>¢ dA

for each x* in 21 and for each ¢ in Ll[O,l] . If (em) is the

usual basis for 21 , then for each m ,

JAmdb diA = S(dle, = I <g,e_>¢ dA

for every ¢ in Ll[O,l] . Therefore Xa = <g,em> almost everywhere
for each integer m . "’

By the construction of the:sets Am:, the sequence (xA )
is dense in. the space of all {0,1}-valued functions on [O0,1] B
equipped with the product topology. Let Xa be a non-measurable
pointwise clusterpoint of the sequence (XA ) . There exists a subnet
(XAB) of (XAm) such that (XAB) converggs pointwise to X, . Note
that Xy = <g,e8> almost everywhere for each B . If x*** in L *
is a weak*-cluster point of the net (es), then we must have
Xp = <xk*% o> almost everywhere. Therefore g is not scalarly meas-

urable. Consequently, the operator § can not have a Pettis kernel

into lw .
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