You can also see how five copies of the pentadentrite fit together by successively adding copies using the buttons below.
The scaling factor is still r = 0.381966. This leads to the following IFS [Details]:
\({f_1}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}}
{0.341} & {  0.071} \\
{0.071} & {0.341} \\
\end{array}} \right]{\bf{x}}\)

scale by r, rotate by 11.82° 
\({f_2}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}}
{0.341} & {  0.071} \\
{0.071} & {0.341} \\
\end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}}
{0.649} \\
{0.136} \\
\end{array}} \right]\)

scale by r, rotate by 11.82° 
\({f_3}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}}
{0.341} & {  0.071} \\
{0.071} & {0.341} \\
\end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}}
{0.071} \\
{0.659} \\
\end{array}} \right]\)

scale by r, rotate by 11.82° 
\({f_4}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}}
{0.341} & {  0.071} \\
{0.071} & {0.341} \\
\end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}}
{0.604} \\
{0.271} \\
\end{array}} \right]\)

scale by r, rotate by 11.82° 
\({f_5}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}}
{0.341} & {  0.071} \\
{0.071} & {0.341} \\
\end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}}
{0.445} \\
{0.491} \\
\end{array}} \right]\)

scale by r, rotate by 11.82° 
\({f_6}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}}
{0.341} & {  0.071} \\
{0.071} & {0.341} \\
\end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}}
{0.330} \\
{  0.575} \\
\end{array}} \right]\)

scale by r, rotate by 11.82° 
\[\sum\limits_{k = 1}^6 {{r^d}} = 1 \quad \Rightarrow \quad d = \frac{{\log (1/6)}}{{\log (r )}} = 1.6995\]